The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants.
View Article and Find Full Text PDFThe continuous detection of emotional states has many applications in mental health, marketing, human-computer interaction, and assistive robotics. Electrodermal activity (EDA), a signal modulated by sympathetic nervous system activity, provides continuous insight into emotional states. However, EDA possesses intricate nonstationary and nonlinear characteristics, making the extraction of emotion-relevant information challenging.
View Article and Find Full Text PDF