Pancreatic β cells play an essential role in the control of systemic glucose homeostasis as they sense blood glucose levels and respond by secreting insulin. Upon stimulating glucose uptake in insulin-sensitive tissues post-prandially, this anabolic hormone restores blood glucose levels to pre-prandial levels. Maintaining physiological glucose levels thus relies on proper β-cell function.
View Article and Find Full Text PDFAims/hypothesis: Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo.
Methods: Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq.
The two monoamines serotonin and melatonin have recently been highlighted as potent regulators of islet hormone secretion and overall glucose homeostasis in the body. In fact, dysregulated signaling of both amines are implicated in β-cell dysfunction and development of type 2 diabetes mellitus (T2DM). Serotonin is a key player in β-cell physiology and plays a role in expansion of β-cell mass.
View Article and Find Full Text PDFReversible phosphorylation is an important regulatory mechanism. Regulation of protein phosphorylation in β-cells has been extensively investigated, but less is known about protein dephosphorylation. To understand the role of protein dephosphorylation in β-cells and type 2 diabetes (T2D), we first examined mRNA expression of the type 2C family (PP2C) of protein phosphatases in islets from T2D donors.
View Article and Find Full Text PDFWe previously reported that loss of mitochondrial transcription factor B1 (TFB1M) leads to mitochondrial dysfunction and is involved in the pathogenesis of type 2 diabetes (T2D). Whether defects in ribosomal processing impact mitochondrial function and could play a pathogenetic role in β-cells and T2D is not known. To this end, we explored expression and the functional role of dimethyladenosine transferase 1 homolog (DIMT1), a homolog of TFB1M and a ribosomal RNA (rRNA) methyltransferase implicated in the control of rRNA.
View Article and Find Full Text PDFAims: Reduced expression of exocytotic genes is associated with functional defects in insulin exocytosis contributing to impaired insulin secretion and type 2 diabetes (T2D) development. MAFA and MAFB transcription factors regulate β-cell physiology, and their gene expression is reduced in T2D β cells. We investigate if loss of MAFA and MAFB in human β cells contributes to T2D progression by regulating genes required for insulin exocytosis.
View Article and Find Full Text PDFThe amplification of glucose-stimulated insulin secretion (GSIS) through incretin signaling is critical for maintaining physiological glucose levels. Incretins, like glucagon-like peptide 1 (GLP1), are a target of type 2 diabetes drugs aiming to enhance insulin secretion. Here we show that the protein phosphatase 1 inhibitor protein 1A (PPP1R1A), is expressed in β-cells and that its expression is reduced in dysfunctional β-cells lacking MafA and upon acute MafA knock down.
View Article and Find Full Text PDFMethylation in CpG sites of the PPARGC1A gene (encoding PGC1-α) has been associated with adiposity, insulin secretion/sensitivity indexes and type 2 diabetes. We assessed the association between the methylation profile of the PPARGC1A gene promoter gene in leukocytes with insulin secretion/sensitivity indexes in normoglycemic women. A standard oral glucose tolerance test (OGTT) and an abbreviated version of the intravenous glucose tolerance test (IVGTT) were carried out in = 57 Chilean nondiabetic women with measurements of plasma glucose, insulin, and C-peptide.
View Article and Find Full Text PDFMaf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas.
View Article and Find Full Text PDFHyperglycaemia and type 2 diabetes (T2D) are associated with impaired insulin secretion and/or insulin action. Since few studies have addressed the relation between DNA methylation patterns with elaborated surrogates of insulin secretion/sensitivity based on the intravenous glucose tolerance test (IVGTT), the aim of this study was to evaluate the association between DNA methylation and an insulin sensitivity index based on IVGTT (calculated insulin sensitivity index (CSi)) in peripheral white blood cells from 57 non-diabetic female volunteers. The CSi and acute insulin response (AIR) indexes, as well as the disposition index (DI = CSi × AIR), were estimated from abbreviated IVGTT in 49 apparently healthy Chilean women.
View Article and Find Full Text PDFMost peripheral serotonin (5-hydroxytryptamine (5HT)) is synthetized in the gut with platelets being its main circulating reservoir. 5HT is acting as a hormone in key organs to regulate glucose and lipid metabolism. However, the relation between platelet 5HT levels and traits related to glucose homeostasis and lipid metabolism in humans remains poorly explored.
View Article and Find Full Text PDFBackground: Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme that esterifies cholesterol in high- and low-density lipoproteins (HDL and LDL). Mutations in LCAT gene causes familial LCAT deficiency, which is characterized by very low plasma HDL-cholesterol levels (Hypoalphalipoproteinemia), corneal opacity and anemia, among other lipid-related traits. Our aim is to evaluate clinical/biochemical features of a Chilean family with a proband showing clinical signs of familial LCAT deficiency, as well as to identify and assess the functional effects of LCAT mutations.
View Article and Find Full Text PDFHigh plasma lactate levels have been associated with reduced mitochondrial respiratory capacity and increased type 2 diabetes risk, while mitochondrial DNA (mtDNA) copy number has been proposed as a biomarker of mitochondrial function linked to glucose homeostasis. The aim of this study was to evaluate the association between circulating lactate levels and leukocyte mtDNA copy numbers with insulin secretion/sensitivity indexes in 65 Chilean non-diabetic women. mtDNA copy numbers were measured in leukocytes using qPCR and digital-droplet PCR.
View Article and Find Full Text PDFType 1 (T1D) and type 2 (T2D) diabetes are triggered by a combination of environmental and/or genetic factors. Maf transcription factors regulate pancreatic beta (β)-cell function, and have also been implicated in the regulation of immunomodulatory cytokines like interferon-β (IFNβ1). In this study, we assessed and co-expression with pro-inflammatory cytokine signaling genes in RNA-seq data from human pancreatic islets.
View Article and Find Full Text PDFMitochondrial open reading frame of the 12S rRNA-c (MOTS-c) is a mitochondrial-derived peptide that attenuates weight gain and hyperinsulinemia when administered to high fat-fed mice. MOTS-c is therefore a potential regulator of metabolic homeostasis under conditions of high-energy supply. However, the effect of insulin resistance and obesity on plasma MOTS-c concentration in humans is unknown.
View Article and Find Full Text PDFPlasma leptin/adiponectin ratio (LAR) is negatively associated with insulin sensitivity indexes. High-molecular-weight adiponectin (HMWA) was proposed as the most biologically active form of this insulin-sensitizing adipokine. There are no studies assessing the relative merits of leptin/HMWA ratio over LAR as a biomarker of systemic insulin sensitivity.
View Article and Find Full Text PDFFasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented.
View Article and Find Full Text PDFAims: Pancreatic β-cells synthesize and release serotonin (5 hydroxytryptamine, 5HT); however, the role of 5HT receptors on glucose stimulated insulin secretion (GSIS) and the mechanisms mediating this function is not fully understood. The aims of this study were to determine the expression profile of 5HT receptors in murine MIN6 β-cells and to examine the effects of pharmacological activation of 5HT receptor Htr2b on GSIS and mitochondrial function.
Materials And Methods: mRNA levels of 5HT receptors in MIN6 cells were quantified by RT qPCR.
Background/aims: To evaluate the association between allelic variants of melanocortin receptors -3 and -4 (MC3R and MC4R, respectively) and leptin receptor (LEPR) genes with body mass index (BMI) and eating behavior.
Methods: We selected 344 Chilean adults (57.8% women; age 39.
Endothelin-converting enzyme-1c (ECE-1c) is a membrane metalloprotease involved in endothelin-1 synthesis, which has been shown in vitro to have a role in breast, ovary and prostate cancer cell invasion. N-terminal end of ECE-1c displays three putative phosphorylation sites for the protein kinase CK2. We studied whether CK2 phosphorylates N-terminal end of ECE-1c as well as whether this has a role in migration and invasion of colon cancer cells.
View Article and Find Full Text PDFThe most studied roles of serotonin (5-hydroxytryptamine, 5HT) have been related to its action in the Central Nervous System (CNS). However, most of 5HT is produced outside the CNS, mainly in the enterochromaffin cells of the gut. Additionally, other tissues such as the endocrine pancreas, particularly β-cells, have its own serotonin system able to synthesize, secrete and respond to extracellular 5HT through cell surface receptors subtypes that have been grouped in 7 families (HTR1-7).
View Article and Find Full Text PDFMaternally Inherited Diabetes and Deafness (MIDD) is caused by mutations in mitochondrial DNA (mtDNA), mainly m.3243A>G. Severity, onset and clinical phenotype of MIDD patients are partially determined by the proportion of mutant mitochondrial DNA copies in each cell and tissue (heteroplasmy).
View Article and Find Full Text PDFBackground: Severe hypertriglyceridemia (HTG) has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis) were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation.
View Article and Find Full Text PDF