Publications by authors named "Luis R Castillo Menendez"

The HIV-1 envelope glycoprotein (Env) trimer mediates cell entry and is conformationally dynamic. Imaging by single-molecule fluorescence resonance energy transfer (smFRET) has revealed that, on the surface of intact virions, mature pre-fusion Env transitions from a pre-triggered conformation (state 1) through a default intermediate conformation (state 2) to a conformation in which it is bound to three CD4 receptor molecules (state 3). It is currently unclear how these states relate to known structures.

View Article and Find Full Text PDF

Background: The detection of weak signals and selection of single particles from low-contrast micrographs of frozen hydrated biomolecules by cryo-electron microscopy (cryo-EM) represents a major practical bottleneck in cryo-EM data analysis. Template-based particle picking by an objective function using fast local correlation (FLC) allows computational extraction of a large number of candidate particles from micrographs. Another independent objective function based on maximum likelihood estimates (MLE) can be used to align the images and verify the presence of a signal in the selected particles.

View Article and Find Full Text PDF

Binding to the receptor CD4 triggers entry-related conformational changes in the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, (gp120/gp41) Soluble versions of HIV-1 Env trimers (sgp140 SOSIP.664) stabilized by a gp120-gp41 disulfide bond and a change (I559P) in gp41 have been structurally characterized. Here, we use cross-linking/mass spectrometry to evaluate the conformations of functional membrane Env and sgp140 SOSIP.

View Article and Find Full Text PDF

The mature envelope glycoprotein (Env) spike on the surfaces of human immunodeficiency virus type 1 (HIV-1)-infected cells and virions is derived from proteolytic cleavage of a trimeric gp160 glycoprotein precursor. In these studies, we compared the conformations of cleaved and uncleaved membrane Envs with truncated cytoplasmic tails to those of stabilized soluble gp140 SOSIP.664 Env trimers.

View Article and Find Full Text PDF

The assembly of HIV-1 is mediated by oligomerization of the major structural polyprotein, Gag, into a hexameric protein lattice at the plasma membrane of the infected cell. This leads to budding and release of progeny immature virus particles. Subsequent proteolytic cleavage of Gag triggers rearrangement of the particles to form mature infectious virions.

View Article and Find Full Text PDF