Publications by authors named "Luis Perles"

Objectives: Radiotherapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs-at-risk (OAR) poses challenges to conventional radiotherapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors.

View Article and Find Full Text PDF

Advancements in radiotherapy technology now enable the delivery of ablative doses to targets in the upper urinary tract, including primary renal cell carcinoma (RCC) or upper tract urothelial carcinomas (UTUC), and secondary involvement by other histologies. Magnetic resonance imaging-guided linear accelerators (MR-Linacs) have shown promise to further improve the precision and adaptability of stereotactic body radiotherapy (SBRT). This single-institution retrospective study analyzed 34 patients (31 with upper urinary tract non-metastatic primaries [RCC or UTUC] and 3 with metastases of non-genitourinary histology) who received SBRT from August 2020 through September 2024 using a 1.

View Article and Find Full Text PDF
Article Synopsis
  • SBRT for abdominal tumors faces challenges like respiratory motion and low tumor contrast, making accurate treatment difficult.
  • Breath-hold treatments using CT-on-rails (CTOR) improve visualization of both tumors and surrounding tissues, helping to better align radiation targets and protect normal tissues.
  • Case studies show that using diagnostic-quality CT guidance allows for precise adjustments in treatment alignment, effectively reducing radiation doses to sensitive organs like the stomach.
View Article and Find Full Text PDF

Purpose: The EXTEND trial tested the hypothesis that adding comprehensive metastasis-directed therapy (MDT) to chemotherapy would improve progression-free survival (PFS) over chemotherapy alone among patients with oligometastatic pancreatic ductal adenocarcinoma (PDAC).

Methods: EXTEND (ClinicalTrials.gov identifier: NCT03599765) is a multicenter, phase II basket trial randomly assigning patients with ≤five metastases 1:1 to MDT plus systemic therapy versus systemic therapy.

View Article and Find Full Text PDF

Purpose: Radiotherapy delivery in the definitive management of lower gastrointestinal (LGI) tract malignancies is associated with substantial risk of acute and late gastrointestinal (GI), genitourinary, dermatologic, and hematologic toxicities. Advanced radiation therapy techniques such as proton beam therapy (PBT) offer optimal dosimetric sparing of critical organs at risk, achieving a more favorable therapeutic ratio compared with photon therapy.

Materials And Methods: The international Particle Therapy Cooperative Group GI Subcommittee conducted a systematic literature review, from which consensus recommendations were developed on the application of PBT for LGI malignancies.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional guidelines recommend preserving 700 cc of liver during radiation treatment to minimize the risk of liver failure, but this study explores using SPECT imaging to better identify and protect functional liver tissue in patients with diminished liver volume from previous treatments.
  • The phase I trial involved 12 patients with colorectal liver metastases, all having received prior chemotherapy, and assessed safety by monitoring for toxicities after high-dose liver-directed radiotherapy.
  • Results showed that incorporating SPECT imaging allowed for safe administration of higher radiation doses without dose-limiting toxicities, achieving a 57% in-field control rate and a 73% overall survival rate after one year.
View Article and Find Full Text PDF

EBT-XD model of Gafchromic films has a broader optimal dynamic dose range, up to 40 Gy, compared to its predecessor models. This characteristic has made EBT-XD films suitable for high-dose applications such as stereotactic body radiotherapy and stereotactic radiosurgery, as well as ultra-high dose rate FLASH radiotherapy. The purpose of the current study was to characterize the dependence of EBT-XD film response on linear energy transfer (LET) and dose rate of therapeutic protons from a synchrotron.

View Article and Find Full Text PDF

Purpose: To determine the dosimetric limitations of daily online adaptive pancreas stereotactic body radiation treatment by using an automated dose escalation approach.

Methods And Materials: We collected 108 planning and daily computed tomography (CT) scans from 18 patients (18 patients × 6 CT scans) who received 5-fraction pancreas stereotactic body radiation treatment at MD Anderson Cancer Center. Dose metrics from the original non-dose-escalated clinical plan (non-DE), the dose-escalated plan created on the original planning CT (DE-ORI), and the dose-escalated plan created on daily adaptive radiation therapy CT (DE-ART) were analyzed.

View Article and Find Full Text PDF

Purpose: To estimate the effects of interfractional anatomic changes on dose to organs at risk (OARs) and tumors, as measured with cone beam computed tomography (CBCT) image guidance for pancreatic stereotactic body radiation therapy.

Methods And Materials: We evaluated 11 patients with pancreatic cancer whom were treated with stereotactic body radiation therapy (33-40 Gy in 5 fractions) using daily CT-on-rails (CTOR) image guidance immediately before treatment with breath-hold motion management. CBCT alignment was simulated in the treatment planning software by aligning the original planning CT to each fractional CTOR image set via fiducial markers.

View Article and Find Full Text PDF

In scanned-beam proton therapy, the beam spot properties, such as the lateral and longitudinal size and the minimum achievable range, are influenced by beam optics, scattering media and drift spaces in the treatment unit. Currently available spot scanning systems offer few options for adjusting these properties. We investigated a method for adjusting the lateral and longitudinal spot size that utilizes downstream plastic pre-absorbers located near a water phantom.

View Article and Find Full Text PDF

Purpose: The purposes of this study were to validate a discrete spot scanning proton beam nozzle using the Monte Carlo (MC) code MCNPX and use the MC validated model to investigate the effects of a low-dose envelope, which surrounds the beam's central axis, on measurements of integral depth dose (IDD) profiles.

Methods: An accurate model of the discrete spot scanning beam nozzle from The University of Texas M. D.

View Article and Find Full Text PDF

The type I 3-dehydroquinate dehydratase (DHQase) which catalyses the reversible dehydration of 3-dehydroquinic acid to 3-dehydroshikimic acid is involved in the shikimate pathway for the biosynthesis of aromatic compounds. The shikimate pathway is absent in mammals, which makes structural information about DHQase vital for the rational design of antimicrobial drugs and herbicides. The crystallographic structure of the type I DHQase from Salmonella typhi has now been determined for the native form at 1.

View Article and Find Full Text PDF