Publications by authors named "Luis Nonato"

High-dimensional data, characterized by many features, can be difficult to visualize effectively. Dimensionality reduction techniques, such as PCA, UMAP, and t-SNE, address this challenge by projecting the data into a lower-dimensional space while preserving important relationships. TopoMap is another technique that excels at preserving the underlying structure of the data, leading to interpretable visualizations.

View Article and Find Full Text PDF

With the increasing use of black-box Machine Learning (ML) techniques in critical applications, there is a growing demand for methods that can provide transparency and accountability for model predictions. As a result, a large number of local explainability methods for black-box models have been developed and popularized. However, machine learning explanations are still hard to evaluate and compare due to the high dimensionality, heterogeneous representations, varying scales, and stochastic nature of some of these methods.

View Article and Find Full Text PDF

Understanding the interpretation of machine learning (ML) models has been of paramount importance when making decisions with societal impacts, such as transport control, financial activities, and medical diagnosis. While local explanation techniques are popular methods to interpret ML models on a single instance, they do not scale to the understanding of a model's behavior on the whole dataset. In this article, we outline the challenges and needs of visually analyzing local explanations and propose SUBPLEX, a visual analytics approach to help users understand local explanations with subpopulation visual analysis.

View Article and Find Full Text PDF

Analyzing classification model performance is a crucial task for machine learning practitioners. While practitioners often use count-based metrics derived from confusion matrices, like accuracy, many applications, such as weather prediction, sports betting, or patient risk prediction, rely on a classifier's predicted probabilities rather than predicted labels. In these instances, practitioners are concerned with producing a calibrated model, that is, one which outputs probabilities that reflect those of the true distribution.

View Article and Find Full Text PDF

To reduce the number of pending cases and conflicting rulings in the Brazilian Judiciary, the National Congress amended the Constitution, allowing the Brazilian Supreme Court (STF) to create binding precedents (BPs), i.e., a set of understandings that both Executive and lower Judiciary branches must follow.

View Article and Find Full Text PDF

Automatic flood detection may be an important component for triggering damage control systems and minimizing the risk of social or economic impacts caused by flooding. Riverside images from regular cameras are a widely available resource that can be used for tackling this problem. Nevertheless, state-of-the-art neural networks, the most suitable approach for this type of computer vision task, are usually resource-consuming, which poses a challenge for deploying these models within low-capability Internet of Things (IoT) devices with unstable internet connections.

View Article and Find Full Text PDF

 The trapezius muscle is often utilized as a muscle or nerve donor for repairing shoulder function in those with brachial plexus birth palsy (BPBP). To evaluate the native role of the trapezius in the affected limb, we demonstrate use of the Motion Browser, a novel visual analytics system to assess an adolescent with BPBP.  An 18-year-old female with extended upper trunk (C5-6-7) BPBP underwent bilateral upper extremity three-dimensional motion analysis with Motion Browser.

View Article and Find Full Text PDF

During the early months of the current COVID-19 pandemic, social distancing measures effectively slowed disease transmission in many countries in Europe and Asia, but the same benefits have not been observed in some developing countries such as Brazil. In part, this is due to a failure to organise systematic testing campaigns at nationwide or even regional levels. To gain effective control of the pandemic, decision-makers in developing countries, particularly those with large populations, must overcome difficulties posed by an unequal distribution of wealth combined with low daily testing capacities.

View Article and Find Full Text PDF

Extracting and analyzing crime patterns in big cities is a challenging spatiotemporal problem. The hardness of the problem is linked to two main factors, the sparse nature of the crime activity and its spread in large spatial areas. Sparseness hampers most time series (crime time series) comparison methods from working properly, while the handling of large urban areas tends to render the computational costs of such methods impractical.

View Article and Find Full Text PDF

Slower than anticipated, COVID-19 vaccine production and distribution have impaired efforts to curtail the current pandemic. The standard administration schedule for most COVID-19 vaccines currently approved is two doses administered 3 to 4 wk apart. To increase the number of individuals with partial protection, some governments are considering delaying the second vaccine dose.

View Article and Find Full Text PDF

A large number of stroke survivors suffer from a significant decrease in upper extremity (UE) function, requiring rehabilitation therapy to boost recovery of UE motion. Assessing the efficacy of treatment strategies is a challenging problem in this context, and is typically accomplished by observing the performance of patients during their execution of daily activities. A more detailed assessment of UE impairment can be undertaken with a clinical bedside test, the UE Fugl-Meyer Assessment, but it fails to examine compensatory movements of functioning body segments that are used to bypass impairment.

View Article and Find Full Text PDF

Multidimensional Projection is a fundamental tool for high-dimensional data analytics and visualization. With very few exceptions, projection techniques are designed to map data from a high-dimensional space to a visual space so as to preserve some dissimilarity (similarity) measure, such as the Euclidean distance for example. In fact, although adopting distinct mathematical formulations designed to favor different aspects of the data, most multidimensional projection methods strive to preserve dissimilarity measures that encapsulate geometric properties such as distances or the proximity relation between data objects.

View Article and Find Full Text PDF

Boundary detection has long been a fundamental tool for image processing and computer vision, supporting the analysis of static and time-varying data. In this work, we built upon the theory of Graph Signal Processing to propose a novel boundary detection filter in the context of graphs, having as main application scenario the visual analysis of spatio-temporal data. More specifically, we propose the equivalent for graphs of the so-called Laplacian of Gaussian edge detection filter, which is widely used in image processing.

View Article and Find Full Text PDF

Seeded segmentation methods have gained a lot of attention due to their good performance in fragmenting complex images, easy usability and synergism with graph-based representations. These methods usually rely on sophisticated computational tools whose performance strongly depends on how good the training data reflect a sought image pattern. Moreover, poor adherence to the image contours, lack of unique solution, and high computational cost are other common issues present in most seeded segmentation methods.

View Article and Find Full Text PDF

São Paulo is the largest city in South America, with crime rates that reflect its size. The number and type of crimes vary considerably around the city, assuming different patterns depending on urban and social characteristics of each particular location. Previous works have mostly focused on the analysis of crimes with the intent of uncovering patterns associated to social factors, seasonality, and urban routine activities.

View Article and Find Full Text PDF

The brachial plexus is a complex network of peripheral nerves that enables sensing from and control of the movements of the arms and hand. Nowadays, the coordination between the muscles to generate simple movements is still not well understood, hindering the knowledge of how to best treat patients with this type of peripheral nerve injury. To acquire enough information for medical data analysis, physicians conduct motion analysis assessments with patients to produce a rich dataset of electromyographic signals from multiple muscles recorded with joint movements during real-world tasks.

View Article and Find Full Text PDF

Visual analysis of multidimensional data requires expressive and effective ways to reduce data dimensionality to encode them visually. Multidimensional projections (MDP) figure among the most important visualization techniques in this context, transforming multidimensional data into scatter plots whose visual patterns reflect some notion of similarity in the original data. However, MDP come with distortions that make these visual patterns not trustworthy, hindering users to infer actual data characteristics.

View Article and Find Full Text PDF

Traditional vector field visualization has a close focus on velocity, and is typically constrained to the dynamics of massless particles. In this paper, we present a novel approach to the analysis of the force-induced dynamics of inertial particles. These forces can arise from acceleration fields such as gravitation, but also be dependent on the particle dynamics itself, as in the case of magnetism.

View Article and Find Full Text PDF

Existing algorithms for building layouts from geometric primitives are typically designed to cope with requirements such as orthogonal alignment, overlap removal, optimal area usage, hierarchical organization, among others. However, most techniques are able to tackle just a few of those requirements simultaneously, impairing their use and flexibility. In this work we propose a novel methodology for building layouts from geometric primitives that concurrently addresses a wider range of requirements.

View Article and Find Full Text PDF

Internet users are very familiar with the results of a search query displayed as a ranked list of snippets. Each textual snippet shows a content summary of the referred document (or webpage) and a link to it. This display has many advantages, for example, it affords easy navigation and is straightforward to interpret.

View Article and Find Full Text PDF

We propose an approach for verification of volume rendering correctness based on an analysis of the volume rendering integral, the basis of most DVR algorithms. With respect to the most common discretization of this continuous model (Riemann summation), we make assumptions about the impact of parameter changes on the rendered results and derive convergence curves describing the expected behavior. Specifically, we progressively refine the number of samples along the ray, the grid size, and the pixel size, and evaluate how the errors observed during refinement compare against the expected approximation errors.

View Article and Find Full Text PDF

Multidimensional projection techniques have experienced many improvements lately, mainly regarding computational times and accuracy. However, existing methods do not yet provide flexible enough mechanisms for visualization-oriented fully interactive applications. This work presents a new multidimensional projection technique designed to be more flexible and versatile than other methods.

View Article and Find Full Text PDF

Creating high-quality quad meshes from triangulated surfaces is a highly nontrivial task that necessitates consideration of various application specific metrics of quality. In our work, we follow the premise that automatic reconstruction techniques may not generate outputs meeting all the subjective quality expectations of the user. Instead, we put the user at the center of the process by providing a flexible, interactive approach to quadrangulation design.

View Article and Find Full Text PDF

Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis.

View Article and Find Full Text PDF

We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points.

View Article and Find Full Text PDF