Publications by authors named "Luis Miguel de Pablos"

Article Synopsis
  • The text discusses a common parasite affecting honey bees, highlighting its significance in research.* -
  • Two specific strains of the parasite, named C2 and C3, have their draft genome sequences reported, measuring approximately 27.15 Mbp and 26.94 Mbp.* -
  • These genome sequences, obtained using the Illumina MiSeq platform, will aid in future studies related to comparative and functional genomics.*
View Article and Find Full Text PDF

Background: Chagas disease, once restricted mainly to the Americas, Chagas disease has become a global health problem due to migration from endemic to non-endemic areas. In non-endemic regions, transmission is limited to vertical transmission from infected mothers to newborns or through blood and organ donations. A major challenge in the management of the disease lies in the diagnosis of chronic cases, as blood-borne parasites are often absent and antibodies persist for life, complicating the evaluation of treatment.

View Article and Find Full Text PDF

Lotmaria passim is a ubiquitous trypanosomatid parasite of honey bees nestled within the medically important subfamily Leishmaniinae. Although this parasite is associated with honey bee colony losses, the original draft genome-which was completed before its differentiation from the closely related Crithidia mellificae-has remained the reference for this species despite lacking improvements from newer methodologies. Here, we report the updated sequencing, assembly, and annotation of the BRL-type (Bee Research Laboratory) strain (ATCC PRA-422) of Lotmaria passim.

View Article and Find Full Text PDF

Leishmania make an abundant glycoprotein and proteophosphoglycan-rich gel, called the promastigote secretory gel, in the anterior midgut of their sand fly vector. This gel is a multi-faceted virulence factor which promotes the survival and transmission of the parasites between hosts. Here, we present the case that Leishmania parasites embedded in the promastigote secretory gel should be redefined as a biofilm as it shares striking similarities in biogenesis, form, and function with biofilms of other unicellular organisms.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on the trypanosomatid parasite Lotmaria passim, which can form multicellular biofilms—a lifestyle that enhances its survival in harsh conditions.
  • * Findings indicate that these parasites' biofilm formation increases their resistance to environmental stressors, which helps explain their prevalence and its potential impacts on honeybee populations.
View Article and Find Full Text PDF

Background: Trypanosomatid parasites are widely distributed in nature and can have a monoxenous or dixenous life-cycle. These parasites thrive in a wide number of insect orders, some of which have an important economic and environmental value, such as bees. The objective of this study was to develop a robust and sensitive real-time quantitative PCR (qPCR) assay for detecting trypanosomatid parasites in any type of parasitized insect sample.

View Article and Find Full Text PDF

is a trypanosomatid species that was initially described in the digestive tract of Hemiptera. However, this parasite was recently detected in honey bee colonies in Spain, raising the question as to whether bees can act as true hosts for this species. To address this issue, worker bees were experimentally infected with choanomastigotes from the early stationary growth phase and after 12 days, their hindgut was extracted for analysis by light microscopy and TEM.

View Article and Find Full Text PDF

Continuous improvements in morphological and histochemical analyses of could improve our understanding of the anatomy and physiology of these insects at both the cellular and tissue level. In this work, two different approaches have been performed to add new data on the abdomen of worker bees: (i) Micro-computed tomography (Micro-CT), which allows the identification of small-scale structures (micrometers) with adequate/optimal resolution and avoids sample damage and, (ii) histochemical multi-staining with Periodic Acid-Schiff-Alcian blue, Lactophenol-Saphranin O and pentachrome staining to precisely characterize the histological structures of the midgut and hindgut. Micro-CT allowed high-resolution imaging of anatomical structures of the honeybee abdomen with particular emphasis on the proventriculus and pyloric valves, as well as the connection of the sting apparatus with the terminal abdominal ganglia.

View Article and Find Full Text PDF

The remodelling of flagella into attachment structures is a common and important event in the trypanosomatid life cycle. Lotmaria passim and Crithidia mellificae can parasitize Apis mellifera, and as a result they might have a significant impact on honeybee health. However, there are details of their life cycle and the mechanisms underlying their pathogenicity in this host that remain unclear.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are small lipid vesicles released by either any prokaryotic or eukaryotic cell, or both, with a biological role in cell-to-cell communication. In this work, we characterize the proteomes and nanomechanical properties of EVs released by tissue-culture cell-derived trypomastigotes (mammalian infective stage; (TCT)) and epimastigotes (insect stage; (E)) of , the etiologic agent of Chagas disease. EVs of each stage were isolated by differential centrifugation and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), electron microscopy and atomic force microscopy (AFM).

View Article and Find Full Text PDF

The impact of trypanosomatid parasites on honeybee health may represent a major threat to bee colonies worldwide. However, few axenic isolates have been generated to date and with no details on cell culture passages, a parameter that could influence parasite virulence. To address this question, a trypanosomatid isolation protocol was developed and a new strain was obtained, named C1.

View Article and Find Full Text PDF

Parasites counteract the action of the immune system and other environmental pressures by modulating and changing the composition of their cell surfaces. Surface multigene protein families are defined not only by highly variable regions in length and/or sequence exposed to the outer space but also by conserved sequences codifying for the signal peptide, hydrophobic C-terminal regions necessary for GPI modifications, as well as conserved UTR regions for mRNA regulation. The method here presented exploits these conserved signatures for characterizing variations in the mRNA expression of clonal cell populations of protozoan parasites using a combination of nested PCR amplification and capillary electrophoresis.

View Article and Find Full Text PDF

The fate of an mRNA is determined by its interaction with proteins and small RNAs within dynamic complexes called ribonucleoprotein complexes (mRNPs). In and related kinetoplastids, responses to internal and external signals are mainly mediated by post-transcriptional processes. Here, we used proximity-dependent biotin identification (BioID) combined with RNA-seq to investigate the changes resulting from ectopic expression of RBP10 and RBP9, two developmentally regulated RNA-binding proteins (RBPs).

View Article and Find Full Text PDF

The exovesicles (EVs) are involved in pathologic host-parasite immune associations and have been recently used as biomarkers for diagnosis of infectious diseases. The release of EVs by Trypanosoma cruzi, the causative agent of Chagas disease, has recently been described, with different protein cargoes including the MASP multigene family of proteins MASPs are specific to this parasite and characterized by a conserved C-terminal (C-term) region and an N-terminal codifying for a signal peptide (SP). In this investigation, we identified immature MASP proteins containing the MASP SP in EVs secreted by the infective forms of the parasite.

View Article and Find Full Text PDF

Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected and emerging tropical disease, endemic to South America and present in non-endemic regions due to human migration. The MASP multigene family is specific to T. cruzi, accounting for 6% of the parasite's genome and plays a key role in immune evasion.

View Article and Find Full Text PDF

Trypanosoma cruzi has a complex life cycle comprising pools of cell populations which circulate among humans, vectors, sylvatic reservoirs and domestic animals. Recent experimental evidence has demonstrated the importance of clonal variations for parasite population dynamics, survival and evolution. By limiting dilution assays, we have isolated seven isogenic clonal cell lines derived from the Pan4 strain of T.

View Article and Find Full Text PDF

Some of the most crucial phenotypic aspects of parasites, such as an antigen-coated surface, parasite sexual differentiation, virulence, and drug resistance, rely on adaptive plasticity and/or stochastic events. At a population level, cell to cell variability represents an avenue for rapid response to drastic changes in the environment. Single cell approaches can be used to unravel the different strategies used by parasites to survive in the context of regulated transcriptional control (apicomplexa) or in its absence (kinetoplastids).

View Article and Find Full Text PDF

Seven 3-month-old, female, helminth-free lambs were immunized intranasally with three doses (1 mg total) of a recombinant part of the catalytic region of the serine/threonine phosphatase 2A (PP2Ar) (group 1 [G1]). In addition, four lambs were used as an adjuvant control group (G2), four as unimmunized, infected controls (G3), and four as unimmunized, uninfected controls (G4). Fifteen days after the last immunization, lambs from G1, G2, and G3 were challenged with 10,000 larval stage 3 (L3) organisms in a plurispecific nematode infection composed of ca.

View Article and Find Full Text PDF

The Trypanosoma cruzi genome contains the most widely expanded content (∼12,000 genes) of the trypanosomatids sequenced to date. This expansion is reflected in the high number of repetitive sequences and particularly in the large quantity of genes that make up its multigene families. Recently it was discovered that the contents of these families vary between phylogenetically unrelated strains.

View Article and Find Full Text PDF

We describe the characterization, purification, expression, and location of a 52-kDa protein secreted during interaction between the metacyclic form of Trypanosoma cruzi and its target host cell. The protein, which we have named MASP52, belongs to the family of mucin-associated surface proteins (MASPs). The highest levels of expression of both the protein and mRNA occur during the metacyclic and bloodstream trypomastigote stages, the forms that infect the vertebrate host cells.

View Article and Find Full Text PDF

We propose maslinic acid (2-alpha, 3-beta-dihydroxiolean-12-en-28-oic acid), found in the leaves and fruit of the olive tree (Olea europaea L.), as a new natural coccidiostatic product against Eimeria tenella. Its action in infected animals has been compared with animals treated with sodium salinomycin.

View Article and Find Full Text PDF

Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose.

View Article and Find Full Text PDF