Kiwi waste from the calibration process is a major environmental problem of kiwi production due to landfill deposition. This work aims to contribute to the agronomic use of recycled kiwi waste through composting. With this objective, a composting experiment was carried out with kiwi fruit waste mixed with 5%, 10% and 20% (fresh weight) of wheat straw from bundles used to protect kiwifruit trunks from frost, as abulking agent to increase aeration, in the piles 5S, 10S and 20S, respectively.
View Article and Find Full Text PDFThe feasibility of commercial-scale co-composting of waste biomass from the control of invasive Acacia species with pine bark waste from the lumber industry, in a blend ratio of 60:40 (v:v), was investigated and compared with previous research on the composting of Acacia without additional feedstock, to determine the potential process and end-product quality benefits of co-composting with bark. Pile temperatures rose rapidly to >70 °C and were maintained at >60 °C for several months. Acacia and bark biomass contained a large fraction of mineralizable organic matter (OM) equivalent to approximately 600 g kg(-1) of initial OM.
View Article and Find Full Text PDFWaste Manag Res
November 2013
The feasibility of commercial-scale composting of waste biomass from the control of invasive Acacia species was investigated. Pile temperatures exceeded 65ºC for several months, indicating that the composting process was effective at pathogen inactivation and seed destruction. Mineralisation of Acacia biomass was described by a two-component, first-order exponential model; the pool sizes for labile and recalcitrant organic matter (OM) were similar and in the approximate ranges: 360-410 g kg(-1) and 350-390 g kg(-1) of initial OM, respectively.
View Article and Find Full Text PDF