Transcription factors in phytopathogenic fungi are key players due to their gene expression regulation leading to fungal growth and pathogenicity. The KilA-N family encompasses transcription factors unique to fungi, and the Bqt4 subfamily is included in it and is poorly understood in filamentous fungi. In this study, we evaluated the role in growth and pathogenesis of the homologous of Bqt4, FspTF, in sp.
View Article and Find Full Text PDFThe Cu-catalyzed reaction of substituted α-diazoesters with fluoride gives α-fluoroesters with ee values of up to 95 %, provided that chiral indane-derived bis(oxazoline) ligands are used that carry bulky benzyl substituents at the bridge and moderately bulky isopropyl groups on their core. The apparently homogeneous solution of CsF in C F /hexafluoroisopropanol (HFIP) is the best reaction medium, but CsF in the biphasic mixture CH Cl /HFIP also provides good results. DFT studies suggest that fluoride initially attacks the Cu- rather than the C-atom of the transient donor/acceptor carbene intermediate.
View Article and Find Full Text PDFCatalytic ring-opening of bio-sourced non-strained lactones with aromatic amines can offer a straightforward, 100 % atom-economical, and sustainable pathway towards relevant N-aryl amide scaffolds. Herein, the first general, metal-free, and highly efficient N-aryl amide formation is reported from poorly reactive aromatic amines and non-strained lactones under mild operating conditions using an organic bicyclic guanidine catalyst. This protocol has high application potential as exemplified by the formal syntheses of drug-relevant molecules.
View Article and Find Full Text PDFThe first asymmetric synthesis of α,α-disubstituted allylic N-arylamines based on a palladium-catalyzed allylic amination has been developed. The protocol uses highly modular vinyl cyclic carbonates and unactivated aromatic amine nucleophiles as substrates. The catalytic process features minimal waste production, ample scope in reaction partners, high asymmetric induction up to 97% ee, and operational simplicity.
View Article and Find Full Text PDFSignificant progress has been observed in recent years in the synthesis of allylic amines, which are important building blocks in synthetic chemistry. Most of these processes are effective toward the preparation of allylic amines, with limited potential to introduce three or four different substituents on the olefinic unit in a stereocontrolled fashion. Therefore, the discovery of a mild and operationally simple protocol allowing such challenging stereoselective synthesis of multisubstituted allylic amines remains an inspiring target.
View Article and Find Full Text PDFThe first general catalytic and highly stereoselective formation of (Z)-1,4-but-2-ene diols is described from readily available and modular vinyl-substituted cyclic carbonate precursors using water as a nucleophilic reagent. These 1,4-diol scaffolds can be generally prepared in high yields and with ample scope in reaction partners using a simple synthetic method that does not require the presence of any additive or any special precaution unlike the stoichiometric approaches reported to date. Control experiments support the mechanistic view that hyperconjugation within the catalytic intermediate after decarboxylation plays an imperative role to control the stereoselective outcome of these reactions.
View Article and Find Full Text PDFA variety of cavitand-based polyphenols was prepared from cheap and accessible aldehyde and resorcinol/pyrogallol reagents to give the respective resorcin[4]- or pyrogallol[4]arenes. The preorganization of the phenolic units allows intra- and intermolecular hydrogen bond (HB) networks that affect both the reactivity and stability of these HB-donor catalysts. Unexpectedly, we found that the resorcin[4]arenes show cooperative catalysis behavior compared to the parent resorcinol in the catalytic coupling of epoxides and CO2 with a significantly higher turnover.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (aaRS) catalyze both chemical steps that translate the universal genetic code. Rodin and Ohno offered an explanation for the existence of two aaRS classes, observing that codons for the most highly conserved Class I active-site residues are anticodons for corresponding Class II active-site residues. They proposed that the two classes arose simultaneously, by translation of opposite strands from the same gene.
View Article and Find Full Text PDFA calix[4]arene host equipped with two bis-[Zn(salphen)] complexes self-assembles into a capsular complex in the presence of a chiral diamine guest with an unexpected 2:1 ratio between the host and the guest. Effective chirality transfer from the diamine to the calix-salen hybrid host is observed by circular dichroism (CD) spectroscopy, and a high stability constant K2,1 of 1.59×10(11) M(-2) for the assembled host-guest ensemble has been determined with a substantial cooperativity factor α of 6.
View Article and Find Full Text PDFThe ring-chain tautomerism of 2-(3-tosyl-1,2,3,4-tetrahydroquinazolin-2-yl)quinolin-8-ol (H(2)L(ring)) has been exploited to produce mononuclear complexes or, alternatively, dinuclear complexes, as desired, by varying the stoichiometry of the ligand. Cu(2+) and Zn(2+) stabilise the ring tautomeric form of the ligand in their mononuclear complexes M(HL(ring))(2). The structural characterisation of Zn(HL(ring))(2)·2MeOH·0.
View Article and Find Full Text PDFThe ring-chain tautomerism of a 2-aryl-1,2,3,4-tetrahydroquinazoline has been exploited to induce reversible changes in the aminal-imine equilibrium, as desired, by coordination of a suitable metal ion. This process was studied by NMR and UV-vis spectroscopies, X-ray crystallography, and molecular modeling approach. The results obtained show that the imine H(2)L(i) undergoes a selective ring-closing reaction upon complexation with Ni(2+).
View Article and Find Full Text PDF