CO hydrogenation to methanol has the potential to serve as a sustainable route to a wide variety of hydrocarbons, fuels and plastics in the quest for net zero. Synergistic Pd/In O (Palldium on Indium Oxide) catalysts show high CO conversion and methanol selectivity, enhancing methanol yield. The identity of the optimal active site for this reaction is unclear, either as a Pd-In alloy, proximate metals, or distinct sites.
View Article and Find Full Text PDFThe pursuit of new catalysts for the aqueous transformation of biomass-derived compounds under mild conditions is an active area of research. In the present work, the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bishydroxymethylfuran (BHMF) was efficiently accomplished in water at 25 °C and 5 bar H pressure (after 1 h full conversion and 100% selectivity). For this, a novel nanocatalyst based on graphene-supported Pt NPs decorated with Sn-butyl fragments (-SnBu) has been used.
View Article and Find Full Text PDFThe search for new ligands capable of modifying the metal nanoparticle (MNP) catalytic behavior is of increasing interest. Herein we present the first example of RuNPs stabilized with non-planar heptagon-containing saddle-shaped nanographenes (Ru@1 and Ru@2). The resemblance to graphene-supported MNPs makes these non-planar nanographene-stabilized RuNPs very attractive systems to further investigate graphene-metal interactions.
View Article and Find Full Text PDFThe development of energetically efficient processes for the aqueous reduction of biomass-derived compounds into chemicals is key for the optimal transformation of biomass. Herein we report an early example of the reduction of biomass-derived oxygenated compounds in water by magnetically induced catalysis. Non-coated and carbon-coated core-shell magnetic nanoparticles were used as the heating agent and the catalyst simultaneously.
View Article and Find Full Text PDFFormation of stable carbides during CO bond dissociation on small ruthenium nanoparticles (RuNPs) is demonstrated, both by means of DFT calculations and by solid state C NMR techniques. Theoretical calculations of chemical shifts in several model clusters are employed in order to secure experimental spectroscopic assignations for surface ruthenium carbides. Mechanistic DFT investigations, carried out on a realistic Ru nanoparticle model (∼1 nm) in terms of size, structure and surface composition, reveal that ruthenium carbides are obtained during CO hydrogenation.
View Article and Find Full Text PDFMagnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 °C, significant sintering of MagNPs takes place.
View Article and Find Full Text PDFBimetallic ruthenium-platinum nanoparticles (RuPt NPs) of different surface distributions and stabilized by using a sulfonated N-heterocyclic carbene ligand (1-(2,6-diisopropylphenyl)-3-(3-potassium sulfonatopropyl)-imidazol-2-ylidene) were prepared from Ru(COD)(COT) (COD = cyclooctadiene and COT = cyclooctatriene), and platinum precursors having various decomposition rates (Pt(NBE), NBE = norbornene, Pt(CH)(COD) and Pt(DBA), DBA = dibenzylideneacetone). Structural and surface studies by FT-IR and solid-state MAS NMR, using carbon monoxide as a probe molecule, revealed the presence of different structures and surface compositions for different nanoparticles of similar sizes, which principally depend on the decomposition rate of the organometallic precursors used during the synthesis. Specifically, the slower the decomposition rate of the platinum precursor, the higher the number of Pt atoms at the NP surface.
View Article and Find Full Text PDFMonomeric alkoxo complexes of the type [(iPrPCP)M-OR] (M = Ni or Pd; R = Me, Et, CH2CH2OH; iPrPCP = 2,6-bis(diisopropylphosphino)phenyl) react rapidly with CO2 to afford the corresponding alkylcarbonates [(iPrPCP)M-OCOOR]. We have investigated the reactions of these compounds as models for key steps of catalytic synthesis of organic carbonates from alcohols and CO2. The MOCO-OR linkage is kinetically labile, and readily exchanges the OR group with water or other alcohols (R'OH), to afford equilibrium mixtures containing ROH and [(iPrPCP)M-OCOOH] (bicarbonate) or [(iPrPCP)M-OCOOR'], respectively.
View Article and Find Full Text PDFHerein we present ruthenium nanoparticles (Ru-NPs) stabilized with two rigid NHC ligands derived from cholesterol. The obtained nanoparticles were fully characterized and applied in the hydrogenation of various aromatic compounds under mild conditions. Interestingly, the more bulky ligand gives a slightly lower ligand coverage and a faster catalyst.
View Article and Find Full Text PDFWe present here the first example of C(sp)-H activation directed by a sulfur atom. Based on this transformation catalyzed by Ru/C, we have developed a hydrogen isotope exchange reaction for the deuterium and tritium labelling of thioether substructures in complex molecules.
View Article and Find Full Text PDFAlthough there has been for the past 20 years great interest in the synthesis and use of metal nanoparticles, little attention has been paid to the complexity of the surface of these species. In particular, the different aspects concerning the ligands present, their location, their mode of binding, and their dynamics have been little studied. Our group has started in the early 1990s an investigation of the surface coordination chemistry of ruthenium and platinum nanoparticles but at that time with a lack of adequate techniques to fulfill our ambition.
View Article and Find Full Text PDFA series of nickel pincer complexes with terminal alkoxo ligands [(PCP)Ni-OR] (R = Et, nBu, iPr, CHCHOH; PCP is the 2,6-bis(diisopropylphosphinomethyl)phenyl pincer ligand) was synthesized and fully characterized. Together with the previously reported methoxo analogues of Ni and Pd, these complexes constitute a unique series of isostructural late transition-metal alkoxides. Spectroscopic and X-ray diffraction data provide direct indications of the strong polarization of their covalent Ni-OR bonds.
View Article and Find Full Text PDFThe synthesis of iridium nanoparticles (IrNPs) ligated by various secondary phosphine oxides (SPOs) is described. This highly reproducible and simple method via H reduction produces well dispersed, small nanoparticles (NPs), which were characterized by the state-of-the-art techniques, such as TEM, HRTEM, WAXS and ATR FT-IR spectroscopy. In particular, multinuclear solid state MAS-NMR spectroscopy with and without cross polarization (CP) enabled us to investigate the different binding modes adopted by the ligand at the nanoparticle surface, suggesting the presence of three possible types of coordination: as a purely anionic ligand Ir-P(O)R, as a neutral acid RP-O-H and as a monoanionic bidentate H-bonded dimer RP-O-HO[double bond, length as m-dash]PR.
View Article and Find Full Text PDFSoluble platinum nanoparticles (Pt NPs) ligated by two different long-chain N-heterocyclic carbenes (LC-IPr and LC-IMe) were synthesized and fully characterized by TEM, high-resolution TEM, wide-angle X-ray scattering (WAXS), X-ray photoelectron spectroscopy (XPS), and solution NMR. The surface chemistry of these NPs (Pt@LC-IPr and Pt@LC-IMe) was investigated by FT-IR and solid state NMR using CO as a probe molecule. A clear influence of the bulkiness of the N-substituents on the size, surface state, and catalytic activity of these Pt NPs was observed.
View Article and Find Full Text PDFThanks to new water-soluble Ru nanoparticles (NPs) stabilized by sulfonated NHC ligands, we demonstrate that it is possible to monitor the catalyst/substrate interaction using NMR chemical shift perturbations (CSPs), under conditions that closely resemble those applied during the enantiospecific C-H deuteration of l-lysine. Correlating the pH dependence of the interaction of l-lysine with the surface of the RuNPs and its subsequent deuteration, our study underscores the importance of oriented binding to the surface as a critical factor for H/D exchange.
View Article and Find Full Text PDFA specific secondary phosphine oxide (SPO) ligand (tert-butyl(phenyl)phosphine oxide) was employed to generate two iridium catalysts, an Ir-SPO complex and IrNPs (iridium nanoparticles) ligated with SPO ligands, which were compared mutually and with several supported iridium catalysts with the aim to establish the differences in their catalytic properties. The Ir-SPO-based catalysts showed totally different activities and selectivities in the hydrogenation of various substituted aldehydes, in which H is likely cleaved by a metal-ligand cooperation, that is, the SPO ligand and a neighboring metal centre operate in tandem to activate the hydrogen molecule. In addition, the supported IrNPs behave very differently from both Ir-SPO catalysts.
View Article and Find Full Text PDFA deeper understanding of the relationship between experimental reaction conditions and the surface composition of nanoparticles is crucial in order to elucidate mechanisms involved in nanocatalysis. In the framework of the Fischer-Tropsch synthesis, a resolution of this complex puzzle requires a detailed understanding of the interaction of CO and H with the surface of the catalyst. In this context, the single- and co-adsorption of CO and H to the surface of a 1 nm ruthenium nanoparticle has been investigated with density functional theory.
View Article and Find Full Text PDFRu nanoparticles (RuNPs) stabilized by non-isolable chiral N-heterocyclic carbenes (NHCs), namely SIDPhNp ((4S,5S)-1,3-di(naphthalen-1-yl)-4,5-diphenylimidazolidine) and SIPhOH ((S)-3-((1S,2R)-2-hydroxy-1,2-diphenylethyl)-1-((R)-2-hydroxy-1,2-diphenylethyl)-4,5-dihydro-3H-imidazoline), have been synthesized through a new procedure that does not require isolation of the free carbenes. The obtained RuNPs have been characterized by state-of-the-art techniques and their surface chemistry has been investigated by FTIR and solid-state MAS NMR upon the coordination of CO, which indicated the presence of free and reactive Ru sites. Their catalytic activity has been tested in various hydrogenation reactions involving competition between different sites, whereby interesting differences in selectivity were observed, but no enantioselectivity.
View Article and Find Full Text PDFThe activation of C-H bonds has revolutionized modern synthetic chemistry. However, no general strategy for enantiospecific C-H activation has been developed to date. We herein report an enantiospecific C-H activation reaction followed by deuterium incorporation at stereogenic centers.
View Article and Find Full Text PDFNickel and palladium methoxides [((iPr)PCP)M-OMe], which contain the (iPr)PCP pincer ligand, decompose upon heating to give products of different kinds. The palladium derivative cleanly gives the dimeric Pd(0) complex [Pd(μ-(iPr)PCHP)]2 ((iPr)PCHP = 2,6-bis(diisopropylphosphinomethyl)phenyl) and formaldehyde. In contrast, decomposition of [((iPr)PCP)Ni-OMe] affords polynuclear carbonyl phosphine complexes.
View Article and Find Full Text PDFWell-defined dimeric or polymeric Pd(0) complexes [Pd(μ-(iPr)PCHP)](n) (n = 2 or ∞) containing the bridging ligand α,α'-bis(diisopropylphosphino)-m-xylene ((iPr)PCHP) are produced under mild conditions when the cyclometallated PCP pincer complex ((iPr)PCP)Pd-OH reacts with methanol or isopropanol.
View Article and Find Full Text PDFPalladium(I) carbonyl carboxylate complexes [Pd(mu-CO)(mu-RCO2)](n) (R = Me, n = 4; R = CMe(3), n = 6) and the corresponding palladium(II) carboxylates (acetate and pivalate) catalyze the cyclopropanation of olefins with ethyl diazoacetate. The performance of these catalysts is similar in terms of selectivity and cyclopropane yields, regardless of the oxidation state of the metal center. However the rates of the cyclopropanation reactions are significantly higher for the acetate based catalysts than for the pivalate derivatives, which suggests that the main catalytic species are carboxylate containing palladium complexes.
View Article and Find Full Text PDF