Purpose: To compare pulmonary function metrics obtained with hyperpolarized xenon-129 (HXe) MRS, using chemical shift saturation recovery (CSSR) and CSI-CSSR, in healthy rats and a rat model of radiation-induced lung injury.
Methods: HXe-MR data were acquired in two healthy rats and one rat with radiation-induced lung injury using whole-lung spectroscopy and CSI-CSSR techniques. The CSI-CSSR acquisitions were performed with both fixed TE and variable TE.
Hyperpolarized Xenon-129 (HXe) magnetic resonance imaging (MRI) provides tools for obtaining 2- or 3-dimensional maps of lung ventilation patterns, gas diffusion, Xenon uptake by lung parenchyma, and other lung function metrics. However, by trading spatial for temporal resolution, it also enables tracing of pulmonary Xenon gas exchange on a ms timescale. This article describes one such technique, chemical shift saturation recovery (CSSR) MR spectroscopy.
View Article and Find Full Text PDFPurpose: To demonstrate the feasibility of a multi-breath xenon-polarization transfer contrast (XTC) MR imaging approach for simultaneously evaluating regional ventilation and gas exchange parameters.
Methods: Imaging was performed in five healthy volunteers and six chronic obstructive pulmonary disease (COPD) patients. The multi-breath XTC protocol consisted of three repeated schemes of six wash-in breaths of a xenon mixture and four normoxic wash-out breaths, with and without selective saturation of either the tissue membrane or red blood cell (RBC) resonances.
Purpose: To demonstrate the utility of continuous-wave (CW) saturation pulses in xenon-polarization transfer contrast (XTC) MRI and MRS, to investigate the selectivity of CW pulses applied to dissolved-phase resonances, and to develop a correction method for measurement biases from saturation of the nontargeted dissolved-phase compartment.
Methods: Studies were performed in six healthy Sprague-Dawley rats over a series of end-exhale breath holds. Discrete saturation schemes included a series of 30 Gaussian pulses (8 ms FWHM), spaced 25 ms apart; CW saturation schemes included single block pulses, with variable flip angle and duration.
Purpose: This study aims to develop and validate a parametric response mapping (PRM) methodology to accurately identify diseased regions of the lung by using variable thresholds to account for alterations in regional lung function between the gravitationally-independent (anterior) and gravitationally-dependent (posterior) lung in CT images acquired in the supine position.
Methods: 34 male Sprague-Dawley rats (260-540 g) were imaged, 4 of which received elastase injection (100 units/kg) as a model for emphysema (EMPH). Gated volumetric CT was performed at end-inspiration (EI) and end-expiration (EE) on separate groups of free-breathing (n = 20) and ventilated (n = 10) rats in the supine position.
Purpose: To demonstrate the feasibility of generating red blood cell (RBC) and tissue/plasma (TP)-specific gas-phase (GP) depolarization maps using xenon-polarization transfer contrast (XTC) MR imaging.
Methods: Imaging was performed in three healthy subjects, an asymptomatic smoker, and a chronic obstructive pulmonary disease (COPD) patient. Single-breath XTC data were acquired through a series of three GP images using a 2D multi-slice GRE during a 12 s breath-hold.
Purpose: To investigate biases in the measurement of apparent alveolar septal wall thickness (SWT) with hyperpolarized xenon-129 (HXe) as a function of acquisition parameters.
Methods: The HXe MRI scans with simultaneous gas-phase and dissolved-phase excitation were performed using 1-dimensional projection scans in mechanically ventilated rabbits. The dissolved-phase magnetization was periodically saturated, and the dissolved-phase xenon uptake dynamics were measured at end inspiration and end expiration with temporal resolutions up to 10 ms using a Look-Locker-type acquisition.
IEEE Trans Med Imaging
September 2019
Hyperpolarized Xe magnetic resonance imaging is a powerful modality capable of assessing lung structure and function. While it has shown promise as a clinical tool for the longitudinal assessment of lung function, its utility as an investigative tool for animal models of pulmonary diseases is limited by the necessity of invasive intubation and mechanical ventilation procedures. In this paper, we overcame this limitation by developing a gas delivery system and implementing a set of imaging schemes to acquire high-resolution gas- and dissolved-phase images in free-breathing mice.
View Article and Find Full Text PDFWhile hyperpolarized xenon-129 (HXe) MRI offers a wide array of tools for assessing functional aspects of the lung, existing techniques provide only limited quantitative information about the impact of an observed pathology on overall lung function. By selectively destroying the alveolar HXe gas phase magnetization in a volume of interest and monitoring the subsequent decrease in the signal from xenon dissolved in the blood inside the left ventricle of the heart, it is possible to directly measure the contribution of that saturated lung volume to the gas transport capacity of the entire lung. In mechanically ventilated rabbits, we found that both xenon gas transport and transport efficiency exhibited a gravitation-induced anterior-to-posterior gradient that disappeared or reversed direction, respectively, when the animal was turned from supine to prone position.
View Article and Find Full Text PDFRationale And Objectives: In this study, we compared a newly developed multibreath simultaneous alveolar oxygen tension and apparent diffusion coefficient (PO-ADC) imaging sequence to a single-breath acquisition, with the aim of mitigating the compromising effects of intervoxel flow and slow-filling regions on single-breath measurements, especially in chronic obstructive pulmonary disease (COPD) subjects.
Materials And Methods: Both single-breath and multibreath simultaneous PO-ADC imaging schemes were performed on a total of 10 human subjects (five asymptomatic smokers and five COPD subjects). Estimated PO and ADC values derived from the different sequences were compared both globally and regionally.
Purpose: To investigate the feasibility of describing the impact of any flip angle-TR combination on the resulting distribution of the hyperpolarized xenon-129 (HXe) dissolved-phase magnetization in the chest using a single virtual parameter, TR .
Methods: HXe MRI scans with simultaneous gas- (GP) and dissolved-phase (DP) excitation were performed using 2D projection scans in mechanically ventilated rabbits. Measurements with DP flip angles ranging from 6-90° and TRs ranging from 8.
Purpose: To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI.
Methods: Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes.