Publications by authors named "Luis J Lopez Giraldo"

The production of waxes from vegetable oils, such as palm oil, for use as a base material in products for human applications is an alternative to those derived from petroleum and animals. Seven palm oil-derived waxes, called biowaxes (BW1-BW7) in this work, were obtained by catalytic hydrotreating of refined and bleached African palm oil and refined palm kernel oil. They were characterized by three properties: compositional, physicochemical (melting point, penetration value, and pH), and biological (sterility, cytotoxicity, phototoxicity, antioxidant, and irritant).

View Article and Find Full Text PDF

Yeasts are one of the main ingredients responsible for flavor precursors production associated with sensorial characteristics in chocolate. Using wild yeast isolated from cocoa beans fermentation is emerging as a strategy for developing starter cultures. However, the volatile compounds (VCs) produced by yeasts are not yet known.

View Article and Find Full Text PDF

To provide further insight into the antioxidant potential of procyanidins (PCs) from cocoa beans, PC extract was fractionated by several methodologies, including solid phase extraction, Sephadex LH-20 gel permeation, and preparative HPLC using C18 and diol stationary phases. All the isolated fractions were analyzed by UHPLC-QTOF-MS to determine their relative composition. According to our results, classical techniques allowed good separation of alkaloids, catechins, dimers, and trimers, but were inefficient for oligomeric PCs.

View Article and Find Full Text PDF

A full factorial design (ascorbic acid/l-cysteine inhibitors, temperature, and time as factors) study was conducted to enhance inhibition of polyphenol oxidase (PPO) activity without decreasing cocoa polyphenol concentrations. The data obtained were modelled through a new equation, represented by Γ, which correlates both high polyphenol content with reduced specific PPO activity. At optimized values (70 mM inhibitory solution at 96 °C for 6.

View Article and Find Full Text PDF

Considering the increasing interest in the incorporation of natural antioxidants in enriched foods, this work aimed to establish a food-grade and suitable procedure for the recovery of polyphenols from cocoa beans avoiding the degreasing process. The results showed that ultrasound for 30 min with particle sample size < 0.18 mm changed the microstructure of the cell, thus increasing the diffusion pathway of polyphenols and avoiding the degreasing process.

View Article and Find Full Text PDF

Small unilamellar and multilayered liposomes loaded with polymeric (epi)catechins up to pentamers were produced. The bioaccessibility, kinetic release profile, and degradation under in vitro gastrointestinal conditions were monitored by UHPLC-DAD-QTOF-MS/MS. The results show that all of the procyanidins underwent depolymerization and epimerization into small molecular oligomers and mainly to (epi)catechin subunits.

View Article and Find Full Text PDF

Liposomes containing theobromine, caffeine, catechin, epicatechin, and a cocoa extract were fabricated using microfluidization and sonication. A high encapsulation efficiency and good physicochemical stability were obtained by sonication (75% amplitude, 7 min). Liposomes produced at pH 5.

View Article and Find Full Text PDF

The aim of this paper is to evaluate the effects of cocoa polyphenols and procyanidins with different degrees of polymerization that are encapsulated in liposome delivery systems on the inhibition of lipid oxidation at pH 3.0 and 5.0.

View Article and Find Full Text PDF

Objectives: Phenolic antioxidants are currently attracting a growing interest as potential therapeutic agents to counteract diseases associated with oxidative stress. However, their high hydrophilicity results in a poor bioavailability hindering the development of efficient antioxidant strategies. A promising way to overcome this is to increase their hydrophobicity by lipophilic moiety grafting to form the newly coined 'phenolipids'.

View Article and Find Full Text PDF

The polar paradox predicts that hydrophobic antioxidants are more active in emulsions than their hydrophilic homologues, thus assuming a linear dependency between hydrophobicity and antioxidant capacity. In contrast, we formulate in this paper an alternative hypothesis assuming a possible nonlinear dependency. To verify this so-called "nonlinear hypothesis", the antioxidant capacity of a homologous series of rosmarinic acid and its alkyl esters (methyl, butyl, octyl, dodecyl, hexadecyl, octadecyl, and eicosyl) was evaluated using a newly developed conjugated autoxidizable triene (CAT) assay.

View Article and Find Full Text PDF

The lipophilization of polar antioxidants such as phenolics is an efficient way to enhance their solubility in apolar media. Thus, in emulsified systems, lipophilized antioxidants are supposed to locate at the lipid/aqueous phase interface and to lead to a better protection of unsaturated lipids. Herein, the antiradical activity of chlorogenic acid (5-CQA) and its corresponding esters with seven fatty alcohols (from methanol to eicosanol) have been achieved using the well-known 2,2-diphenyl-1-picrylhydrazyl (DPPH) method.

View Article and Find Full Text PDF

Described here is a novel spectrophotometric method for estimating antioxidant capacity in a 96-well microplate using as UV probes the conjugated triene triacylglycerols (TAGs) naturally present in tung oil. The TAGs of this commercially available oil contain around 86% eleostearic acid, an octadecatrienoic acid with conjugated trienes exhibiting strong UV absorption at 273 nm. In an oil-in-water emulsion at 37 degrees C, the azo initiator 2,2'-azobis(2-amidinopropane) dihydrochloride generated a constant flux of peroxy radicals, which destroyed the conjugated trienes.

View Article and Find Full Text PDF

Lipid oxidation in dispersed lipids is prevalent at the oil-water interface where lipid hydroperoxides are decomposed into free radicals by transition metals. Free radical scavenging antioxidants are believed to be most effective in lipid dispersions when they accumulate at the oil-water interface. The surface activity of antioxidants could be increased by their conjugation to hydrocarbon chains.

View Article and Find Full Text PDF