In this work the development of photoactive dressings (PAD) with dual purpose, is presented. These PAD can be used for the topical treatment of persistent infections caused by fungi and bacteria and are also applicable in light antitumor therapy for carcinoma. The synthesized PAD were designed employing conjugated polymer nanoparticles (CPN) doped with platinum porphyrin which serve as polymerization photoinitiators and photosensitizers for the production of reactive oxygen species (ROS).
View Article and Find Full Text PDFIn sun-drenched regions, balancing solar exposure for thermal comfort and minimization of cooling energy presents a key challenge. While passive shading mitigates summer heat gain, it also hinders winter solar benefits, a problem that is echoed by active systems such as photovoltaic panels. Existing adaptive solutions, adjusting to seasonal sun angles, offer flexibility, but introduce complexity, maintenance demands, and potentially higher costs.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis.
View Article and Find Full Text PDFGlioblastoma (GBM) is an aggressive brain cancer characterized by significant molecular and cellular heterogeneity, which complicates treatment efforts. Current standard therapies, including surgical resection, radiation, and temozolomide (TMZ) chemotherapy, often fail to achieve long-term remission due to tumor recurrence and resistance. A pro-oxidant environment is involved in glioma progression, with oxidative stress contributing to the genetic instability that leads to gliomagenesis.
View Article and Find Full Text PDFBovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN).
View Article and Find Full Text PDFBrain tumors are a significant concern for the global medical community, with over 300,000 cases reported annually worldwide [...
View Article and Find Full Text PDFSonodynamic inactivation (SDI) of pathogens has an important advantage when compared to optical excitation-based protocols due to the deeper penetration of ultrasound (US) excitation in biological media or animal tissue. Sonosensitizers (SS) are compounds or systems that upon US stimulation in the therapeutic window (frequency = 0.8-3 MHz and intensity < 3 W/cm) can induce damage to vital components of pathogenic microorganisms.
View Article and Find Full Text PDFIntroduction: Cerebral venous sinus thrombosis (CVST) is a well-known, although underestimated, cause of stroke in childhood. Its diagnosis requires a high index of suspicion, a correct interpretation of neuroimaging studies and an interrelation between clinicians and radiologists. The clinical features, risk factors and neuroimaging of children under 15 years of age with CVST were analyzed.
View Article and Find Full Text PDFAlternative therapies such as photodynamic therapy (PDT) that combine light, oxygen and photosensitizers (PSs) have been proposed for glioblastoma (GBM) management to overcome conventional treatment issues. An important disadvantage of PDT using a high light irradiance (fluence rate) (cPDT) is the abrupt oxygen consumption that leads to resistance to the treatment. PDT metronomic regimens (mPDT) involving administering light at a low irradiation intensity over a relatively long period of time could be an alternative to circumvent the limitations of conventional PDT protocols.
View Article and Find Full Text PDFGliomas are primary malignant brain tumors. These tumors seem to be more and more frequent, not only because of a true increase in their incidence, but also due to the increase in life expectancy of the general population. Among gliomas, malignant gliomas and more specifically glioblastomas (GBM) are a challenge in their diagnosis and treatment.
View Article and Find Full Text PDFIn recent years significant efforts have been made to develop new materials for wound dressing with improved healing properties. However, the synthesis methods usually employed to this end are often complex or require several steps. We describe here the synthesis and characterization of antimicrobial reusable dermatological wound dressings based on N-isopropylacrylamide co-polymerized with [2-(Methacryloyloxy) ethyl] trimethylammonium chloride hydrogels (NIPAM-co-METAC).
View Article and Find Full Text PDF"Smart" nanogels are an attractive tool for the development of new strategies of immunization in veterinary medicine. Here, we reported the synthesis and physicochemical characterization of thermoresponsive nanogels based on poly(N-isopropylacrylamide) (pNIPAM) and theirin vitro, ex vivoand in vivo (mice model) performance. Smart nanogels of ca.
View Article and Find Full Text PDFEach year a rising number of infections can not be successfully treated owing to the increasing pandemic of antibiotic resistant pathogens. The global shortage of innovative antibiotics fuels the emergence and spread of drug resistant microbes. Basic research, development, and applications of alternative therapies are urgently needed.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is an aggressive cancer with limited targeted therapies. RNA aptamers, suitably chemically modified, work for therapeutic purposes in the same way as antibodies. We recently generated 2'Fluoro-pyrimidines RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) may be an excellent alternative in the treatment of breast cancer, mainly for the most aggressive type with limited targeted therapies such as triple-negative breast cancer (TNBC). We recently generated conjugated polymer nanoparticles (CPNs) as efficient photosensitizers for the photo-eradication of different cancer cells. With the aim of improving the selectivity of PDT with CPNs, the nanoparticle surface conjugation with unique 2'-Fluoropyrimidines-RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells was proposed and designed.
View Article and Find Full Text PDFConjugated polymer nanoparticles (CPNs) have emerged as advanced polymeric nanoplatforms in biomedical applications by virtue of extraordinary properties including high fluorescence brightness, large absorption coefficients of one and two-photons, and excellent photostability and colloidal stability in water and physiological medium. In addition, low cytotoxicity, easy functionalization, and the ability to modify CPN photochemical properties by the incorporation of dopants, convert them into excellent theranostic agents with multifunctionality for imaging and treatment. In this work, CPNs were designed and synthesized by incorporating a metal oxide magnetic core (FeO and NiFeO nanoparticles, 5 nm) into their matrix during the nanoprecipitation method.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has recently gained attention as an alternative treatment of malignant gliomas. Glioblastoma (GBM) is the most prevalent within tumors of the central nervous system (CNS). Conventional treatments for this CNS tumor include surgery, radiation, and chemotherapy.
View Article and Find Full Text PDFDue to their superb light absorption and photostability conjugated polymer nanoparticles are promising photosensitizers (PS) for their use in Photodynamic therapy (PDT). Recently, we developed metallated porphyrin-doped conjugated polymer nanoparticles (CPNs) for PDT that efficiently eliminate tumor cells through reactive oxygen species (ROS) mediated photoinduced damage of apoptotic nature. These nanoaggregates act as densely packed multi-chromophoric systems having exceptional light harvesting and (intra-particle) energy transfer capabilities which lead to efficient photosensitized formation of ROS.
View Article and Find Full Text PDFTo assess monocyte-based delivery of conjugated polymer nanoparticles (CPNs) for improved photodynamic therapy (PDT) in glioblastoma (GBM). Human monocyte cells (THP-1) and murine monocytes isolated from bone marrow (mBMDMs) were employed as stealth CPN carriers to penetrate into GBM spheroids and an orthotopic model of the tumor. The success of PDT, using this cell-mediated targeting strategy, was determined by its effect on the spheroids.
View Article and Find Full Text PDFPhotodynamic inactivation (PDI) protocols using photoactive metallated porphyrin-doped conjugated polymer nanoparticles (CPNs) and blue light were developed to eliminate multidrug-resistant pathogens. CPNs-PDI protocols using varying particle concentrations and irradiation doses were tested against nine pathogenic bacterial strains including antibiotic-resistant bacteria of the ESKAPE (, , , , , and ) pathogens group. The bactericidal effect was achieved in methicillin-resistant () strains using low light doses (9.
View Article and Find Full Text PDFCytokine
September 2020
Cytokine
April 2020
Cervical cancer (CeCa) produces large amounts of IL-10, which downregulates the major histocompatibility complex class I molecules (HLA-I) in cancer cells and inhibits the immune response mediated by cytotoxic T lymphocytes (CTLs). In this study, we analyzed the ability of CeCa cells to produce IL-10 through the CD73-adenosine pathway and its effect on the downregulation of HLA-I molecules to evade CTL-mediated immune recognition. CeCa cells cultured in the presence of ≥10 µM AMP or adenosine produced 4.
View Article and Find Full Text PDF