Analysis of eukaryotic genomes requires the detection and classification of transposable elements (TEs), a crucial but complex and time-consuming task. To improve the performance of tools that accomplish these tasks, Machine Learning approaches (ML) that leverage computer resources, such as GPUs (Graphical Processing Unit) and multiple CPU (Central Processing Unit) cores, have been adopted. However, until now, the use of ML techniques has mostly been limited to classification of TEs.
View Article and Find Full Text PDFLTR-retrotransposons are the most abundant repeat sequences in plant genomes and play an important role in evolution and biodiversity. Their characterization is of great importance to understand their dynamics. However, the identification and classification of these elements remains a challenge today.
View Article and Find Full Text PDFThe emergence of COVID-19 as a global pandemic forced researchers worldwide in various disciplines to investigate and propose efficient strategies and/or technologies to prevent COVID-19 from further spreading. One of the main challenges to be overcome is the fast and efficient detection of COVID-19 using deep learning approaches and medical images such as Chest Computed Tomography (CT) and Chest X-ray images. In order to contribute to this challenge, a new dataset was collected in collaboration with "S.
View Article and Find Full Text PDF