Publications by authors named "Luis H Galindo"

Since the fat content of pork is a deciding factor in meat quality grading, the use of a noninvasive subcutaneous probe for real-time in situ monitoring of the fat components is of importance to vendors and other interested parties. In this work, we developed a spectroscopic method using a fiber-optic probe for subcutaneous fat analysis that utilizes spatially offset Raman spectroscopy (SORS). Here, normalized Raman spectra were acquired as a function of spatial offset, and the relative composition of fat-to-skin was determined.

View Article and Find Full Text PDF

Noninvasive blood glucose monitoring has been a long-standing dream in diabetes management. The use of Raman spectroscopy, with its molecular specificity, has been investigated in this regard over the past decade. Previous studies reported on glucose sensing based on indirect evidence such as statistical correlation to the reference glucose concentration.

View Article and Find Full Text PDF

The authors would like to bring to the reader's attention that the Clarke error grid plot presented in Fig. 3 was generated using codes adapted from following reference.

View Article and Find Full Text PDF

Optical monitoring of blood glucose levels for non-invasive diagnosis is a growing area of research. Recent efforts in this direction have been inclined towards reducing the requirement of calibration framework. Here, we are presenting a systematic investigation on the influence of variation in the ratio of calibration and validation points on the prospective predictive accuracy of spectral models.

View Article and Find Full Text PDF

Microcalcifications are a feature of diagnostic significance on a mammogram and a target for stereotactic breast needle biopsy. Here, we report development of a Raman spectroscopy technique to simultaneously identify microcalcification status and diagnose the underlying breast lesion, in real-time, during stereotactic core needle biopsy procedures. Raman spectra were obtained ex vivo from 146 tissue sites from fresh stereotactic breast needle biopsy tissue cores from 33 patients, including 50 normal tissue sites, 77 lesions with microcalcifications, and 19 lesions without microcalcifications, using a compact clinical system.

View Article and Find Full Text PDF

Microcalcifications are an early mammographic sign of breast cancer and a target for stereotactic breast needle biopsy. Here, we develop and compare different approaches for developing Raman classification algorithms to diagnose invasive and in situ breast cancer, fibrocystic change and fibroadenoma that can be associated with microcalcifications. In this study, Raman spectra were acquired from tissue cores obtained from fresh breast biopsies and analyzed using a constituent-based breast model.

View Article and Find Full Text PDF

Microcalcifications are an early mammographic sign of breast cancer and a target for stereotactic breast needle biopsy. We developed Raman spectroscopy decision algorithms to detect breast microcalcifications, based on fit coefficients (FC) derived by modeling tissue Raman spectra as a linear combination of the Raman spectra of 9 chemical and morphologic components of breast tissue. However, little or no information is available on the precision of such measurements and its effect on the ability of Raman spectroscopy to make predictions for breast microcalcification detection.

View Article and Find Full Text PDF

The combination of reflectance, fluorescence, and Raman spectroscopy-termed multimodal spectroscopy (MMS)-provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting.

View Article and Find Full Text PDF

The rupture of vulnerable atherosclerotic plaque accounts for the majority of clinically significant acute cardiovascular events. Because stability of these culprit lesions is directly related to chemical and morphological composition, Raman spectroscopy may be a useful technique for their study. Recent developments in optical fiber probe technology have allowed for the real-time in vivo Raman spectroscopic characterization of human atherosclerotic plaque demonstrated in this work.

View Article and Find Full Text PDF

In vitro experiments have demonstrated the ability of Raman spectroscopy to diagnose a wide variety of diseases. Recent in vivo investigations performed with optical fiber probes were promising but generally limited to easily accessible organs, often requiring relatively long collection times. We have implemented an optical design strategy to utilize system throughput fully by characterizing the Raman distribution from tissue.

View Article and Find Full Text PDF