Complex oxides offer a wide range of functional properties, and recent advances in the fabrication of freestanding membranes of these oxides are adding new mechanical degrees of freedom to this already rich functional ecosystem. Here, photoactuation is demonstrated in freestanding thin film resonators of ferroelectric Barium Titanate (BaTiO) and paraelectric Strontium Titanate (SrTiO). The free-standing films, transferred onto perforated supports, act as nano-drums, oscillating at their natural resonance frequency when illuminated by a frequency-modulated laser.
View Article and Find Full Text PDFThe unique mechanical and electrical properties of graphene make it an exciting material for nanoelectromechanical systems (NEMS). NEMS resonators with graphene springs facilitate studies of graphene's fundamental material characteristics and thus enable innovative device concepts for applications such as sensors. Here, we demonstrate resonant transducers with ribbon-springs made of double-layer graphene and proof masses made of silicon and study their nonlinear mechanics at resonance both in air and in vacuum by laser Doppler vibrometry.
View Article and Find Full Text PDFReflectivity modulation is a critical feature for applications in telecommunications, 3D imaging and printing, advanced laser machining, or portable displays. Tunable metasurfaces have recently emerged as a promising implementation for miniaturized and high-performance tunable optical components. Commonly, metasurface response tuning is achieved by electro-optical effects.
View Article and Find Full Text PDFMicrosyst Nanoeng
September 2022
Microelectromechanical system (MEMS) devices, such as accelerometers, are widely used across industries, including the automotive, consumer electronics, and medical industries. MEMS are efficiently produced at very high volumes using large-scale semiconductor manufacturing techniques. However, these techniques are not viable for the cost-efficient manufacturing of specialized MEMS devices at low- and medium-scale volumes.
View Article and Find Full Text PDFMeasuring vibrations is essential to ensuring building structural safety and machine stability. Predictive maintenance is a central internet of things (IoT) application within the new industrial revolution, where sustainability and performance increase over time are going to be paramount. To reduce the footprint and cost of vibration sensors while improving their performance, new sensor concepts are needed.
View Article and Find Full Text PDFHydrodynamic cavitation is one of the major phase change phenomena and occurs with a sudden decrease in the local static pressure within a fluid. With the emergence of microelectromechanical systems (MEMS), high-speed microfluidic devices have attracted considerable attention and been implemented in many fields, including cavitation applications. In this study, a new generation of 'cavitation-on-a-chip' devices with eight parallel structured microchannels is proposed.
View Article and Find Full Text PDFCalorimetry of single biological entities remains elusive. Suspended microchannel resonators (SMRs) offer excellent performance for real-time detection of various analytes and could hold the key to unlocking pico-calorimetry experiments. However, the typical readout techniques for SMRs are optical-based, and significant heat is dissipated in the sensor, altering the measurement and worsening the frequency noise.
View Article and Find Full Text PDFDirected self-assembly of block copolymers is a bottom-up approach to nanofabrication that has attracted high interest in recent years due to its inherent simplicity, high throughput, low cost and potential for sub-10 nm resolution. In this paper, we review the main principles of directed self-assembly of block copolymers and give a brief overview of some of the most extended applications. We present a novel fabrication route based on the introduction of directed self-assembly of block copolymers as a patterning option for the fabrication of nanoelectromechanical systems.
View Article and Find Full Text PDFGraphene's unparalleled strength, chemical stability, ultimate surface-to-volume ratio and excellent electronic properties make it an ideal candidate as a material for membranes in micro- and nanoelectromechanical systems (MEMS and NEMS). However, the integration of graphene into MEMS or NEMS devices and suspended structures such as proof masses on graphene membranes raises several technological challenges, including collapse and rupture of the graphene. We have developed a robust route for realizing membranes made of double-layer CVD graphene and suspending large silicon proof masses on membranes with high yields.
View Article and Find Full Text PDFIn this paper ultra clean monolayer and bilayer Chemical Vapor Deposited (CVD) graphene membranes with diameters up to 500 µm and 750 µm, respectively have been fabricated using Inverted Floating Method (IFM) followed by thermal annealing in vacuum. The yield decreases with size but we show the importance of choosing a good graphene raw material. Dynamic mechanical properties of the membranes at room temperature in different diameters are measured before and after annealing.
View Article and Find Full Text PDFHydrodynamic cavitation is considered an effective tool to be used in different applications, such as surface cleaning, ones in the food industry, energy harvesting, water treatment, biomedical applications, and heat transfer enhancement. Thus, both characterization and intensification of cavitation phenomenon are of great importance. This study involves design and optimization of cavitation on chip devices by utilizing wall roughness elements and working fluid alteration.
View Article and Find Full Text PDFThermal analysis is essential for the characterization of polymers and drugs. However, the currently established methods require a large amount of sample. Here, we present pyrolytic carbon resonators as promising tools for micromechanical thermal analysis (MTA) of nanograms of polymers.
View Article and Find Full Text PDFUncooled infrared detectors have enabled the rapid growth of thermal imaging applications. These detectors are predominantly bolometers, reading out a pixel's temperature change due to infrared radiation as a resistance change. Another uncooled sensing method is to transduce the infrared radiation into the frequency shift of a mechanical resonator.
View Article and Find Full Text PDFWe report on the design and operation of a world-to-chip microfluidic interface and experimental setup for fluidic micro- and nano-electromechanical systems. The central component of the interface is an engineered polyether ether ketone connector that brings fluid samples from a commercial syringe pump to the chip with the help of o-rings. In addition to that, the connector serves as an on-chip vacuum chamber.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2019
In this paper, we demonstrate the fabrication of contour-mode resonators (CMRs) with AlScN as a piezoelectric layer. Moreover, we assess the electromechanical coupling and the maximum achieved quality factor from 150 to 500 MHz. In comparison to pure aluminum nitride (AlN) CMRs, our results show electromechanical coupling coefficients of more than a 2× factor higher at around 200 MHz.
View Article and Find Full Text PDFThe modern theory of charge polarization in solids is based on a generalization of Berry's phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals.
View Article and Find Full Text PDFEnergy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. In this research, a new cost-effective and environment-friendly solution is proposed for the growing individual energy needs thanks to the energy application of cavitating flows. With the aid of cavitating jet flows from microchannel configurations of different sizes, it is shown that significant temperature rise (as high as 5.
View Article and Find Full Text PDFThe authors wish to make the following correction to this paper [1]: The article type should be changed from "Review" into "Article".[..
View Article and Find Full Text PDFFrequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest.
View Article and Find Full Text PDFExperiments on micro- and nano-mechanical systems (M/NEMS) have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke's law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS.
View Article and Find Full Text PDFHydrogen sensing is essential to ensure safety in near-future zero-emission fuel cell powered vehicles. Here, we present a novel hydrogen sensor based on the resonant frequency change of a nanoelectromechanical clamped-clamped beam. The beam is coated with a Pd layer, which expands in the presence of H(2), therefore generating a stress build-up that causes the frequency of the device to drop.
View Article and Find Full Text PDFA hydrogen sensor based on a novel fabrication process that combines the precision of advanced nano-fabrication techniques with a bottom-up process based on electrochemistry is presented. The sensor allows for reliable detection between 0.1% and 100% of H(2) in air.
View Article and Find Full Text PDF