Publications by authors named "Luis Gabriel Gimenez-Lirola"

Coronaviruses use a broad range of host receptors for binding and cell entry, essential steps in establishing viral infections. This pilot study evaluated the overall distribution of angiotensin-converting enzyme 2 (ACE2), aminopeptidase N (APN), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), and dipeptidyl peptidase 4 (DPP4) receptors in the pig respiratory and intestinal tract. All the receptors evaluated in this study were expressed and differentially distributed through the respiratory and intestinal tract.

View Article and Find Full Text PDF

Animal models and cell culture are primarily used in virus and antiviral immune research. Whereas the limitation of these models to recapitulate the viral pathogenesis in humans has been made well aware, it is imperative to introduce more efficient systems to validate emerging viruses in both domestic and wild animals. Organoids ascribe to representative miniatures of organs (i.

View Article and Find Full Text PDF
Article Synopsis
  • The African swine fever virus (ASFV) poses a serious threat to the global swine industry, highlighting the need for effective diagnostic tests for timely detection.
  • This study developed a blocking ELISA (bELISA) using recombinant p30 protein, which showed high diagnostic sensitivity (98.11%) and specificity (99.42%) when tested on sera from various animals.
  • The bELISA was able to detect ASFV infection in pigs just 7 days after exposure, suggesting it is a valuable tool for outbreak detection and monitoring.
View Article and Find Full Text PDF

Coronavirus infections are a continuous threat raised time and again. With the recent emergence of novel virulent strains, these viruses can have a large impact on human and animal health. Porcine epidemic diarrhea (PED) is considered to be a reemerging pig disease caused by the enteropathogenic PED virus (PEDV).

View Article and Find Full Text PDF

The porcine hemagglutinating encephalomyelitis virus (PHEV) is classified as a member of genus , family , sub-family , and order . PHEV shares the same genomic organization, replication strategy, and expression of viral proteins as other nidoviruses. PHEV produces vomiting and wasting disease (VWD) and/or encephalomyelitis, being the only known neurotropic coronavirus affecting pigs.

View Article and Find Full Text PDF

Senecavirus A (SVA) is a single-stranded RNA virus in the family Picornaviridae. Recently, SVA has been associated with idiopathic vesicular disease and increased neonate mortality outbreaks in the United States, Brazil, China, Colombia, and Thailand, with increasing incidence since 2014. Indirect detection by antibody detection methods, including indirect immunofluorescence assay (IFA), virus neutralization assay, and competitive or indirect enzyme-linked immunosorbent assays (ELISAs), have been reported in clinical and experimental trials.

View Article and Find Full Text PDF

The development of porcine epidemic diarrhea virus (PEDV) antibody-based assays is important for detecting infected animals, confirming previous virus exposure, and monitoring sow herd immunity. However, the potential cross-reactivity among porcine coronaviruses is a major concern for the development of pathogen-specific assays. In this study, we used serum samples ( = 792) from pigs of precisely known infection status and a multiplex fluorescent microbead-based immunoassay and/or enzyme-linked immunoassay platform to characterize the antibody response to PEDV whole-virus (WV) particles and recombinant polypeptides derived from the four PEDV structural proteins, i.

View Article and Find Full Text PDF

We performed a longitudinal field study in a swine breeding herd that presented with an outbreak of vesicular disease (VD) that was associated with an increase in neonatal mortality. Initially, a USDA Foreign Animal Disease (FAD) investigation confirmed the presence of Senecavirus A (SVA) and ruled out the presence of exotic agents that produce vesicular lesions, e.g.

View Article and Find Full Text PDF

The contribution of circulating antibody to the protection of naïve piglets against porcine epidemic diarrhea virus (PEDV) was evaluated using a passive antibody transfer model. Piglets (n = 62) derived from 6 sows were assigned to one of 6 different treatments using a randomized block design which provided for allocation of all treatments to all sows' litters. Each treatment was designed to achieve a different level of circulating anti-PEDV antibody via intraperitoneally administration of concentrated serum antibody.

View Article and Find Full Text PDF