Zero-dimensional pores spanning only a few angstroms in size in two-dimensional materials such as graphene are some of the most promising systems for designing ion-ion selective membranes. However, the key challenge in the field is that so far a crack-free macroscopic graphene membrane for ion-ion separation has not been realized. Further, methods to tune the pores in the Å-regime to achieve a large ion-ion selectivity from the graphene pore have not been realized.
View Article and Find Full Text PDFZeolitic imidazolate frameworks (ZIFs) are a subset of metal-organic frameworks with more than 200 characterized crystalline and amorphous networks made of divalent transition metal centres (for example, Zn and Co) linked by imidazolate linkers. ZIF thin films have been intensively pursued, motivated by the desire to prepare membranes for selective gas and liquid separations. To achieve membranes with high throughput, as in ångström-scale biological channels with nanometre-scale path lengths, ZIF films with the minimum possible thickness-down to just one unit cell-are highly desired.
View Article and Find Full Text PDFThe successful implementation of thin-film composite membranes (TFCM) for challenging solute-solute separations in the pharmaceutical industry requires a fine control over the microstructure (size, distribution, and connectivity of the free-volume elements) and thickness of the selective layer. For example, desalinating antibiotic streams requires highly interconnected free-volume elements of the right size to block antibiotics but allow the passage of salt ions and water. Here, we introduce stevioside, a plant-derived contorted glycoside, as a promising aqueous phase monomer for optimizing the microstructure of TFCM made via interfacial polymerization.
View Article and Find Full Text PDFGas separation is one of the most important industrial processes and is poised to take a larger role in the transition to renewable energy, e.g., carbon capture and hydrogen purification.
View Article and Find Full Text PDFEnhancing the kinetics of liquid-vapor transition from nanoscale confinements is an attractive strategy for developing evaporation and separation applications. The ultimate limit of confinement for evaporation is an atom thick interface hosting angstrom-scale nanopores. Herein, using a combined experimental/computational approach, we report highly enhanced water evaporation rates when angstrom sized oxygen-functionalized graphene nanopores are placed at the liquid-vapor interface.
View Article and Find Full Text PDFPoly(triazine imide) or PTI is an ordered graphitic carbon nitride hosting Å-scale pores attractive for selective molecular transport. AA'-stacked PTI layers are synthesized by ionothermal route during which ions occupy the framework and occlude the pores. Synthesis of ion-free PTI hosting AB-stacked layers has been reported, however, pores in this configuration are blocked by the neighboring layer.
View Article and Find Full Text PDFA controlled manipulation of graphene edges and vacancies is desired for molecular separation, sensing and electronics applications. Unfortunately, available etching methods always lead to vacancy nucleation making it challenging to control etching. Herein, we report CO -led controlled etching down to 2-3 Å per minute while completely avoiding vacancy nucleation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (10 cm) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition.
View Article and Find Full Text PDFPredictable and tunable etching of angstrom-scale nanopores in single-layer graphene (SLG) can allow one to realize high-performance gas separation even from similar-sized molecules. We advance toward this goal by developing two etching regimes for SLG where the incorporation of angstrom-scale vacancy defects can be controlled. We screen several exposure profiles for the etchant, controlled by a multipulse millisecond treatment, using a mathematical model predicting the nucleation and pore expansion rates.
View Article and Find Full Text PDFEtching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO from N However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision.
View Article and Find Full Text PDFThe synthesis of molecular-sieving zeolitic membranes by the assembly of building blocks, avoiding the hydrothermal treatment, is highly desired to improve reproducibility and scalability. Here we report exfoliation of the sodalite precursor RUB-15 into crystalline 0.8-nm-thick nanosheets, that host hydrogen-sieving six-membered rings (6-MRs) of SiO tetrahedra.
View Article and Find Full Text PDFPoly(triazine imide) (PTI), a crystalline g-CN, hosting two-dimensional nanoporous structure with an electron density gap of 0.34 nm, is highly promising for high-temperature hydrogen sieving because of its high chemical and thermal robustness. Currently, layered PTI is synthesized in potentially unsafe vacuum ampules in milligram quantities.
View Article and Find Full Text PDFInorganic membranes based on carbon molecular sieve (CMS) films hosting slit-like pores can yield high molecular selectivity with a sub-angstrom resolution in molecular differentiation and therefore are highly attractive for energy-efficient separations. However, the selective layer thickness of the state-of-the-art CMS membranes for gas separation is more than 1 μm, yielding low gas permeance. Also, there is no room-temperature functionalization route for the modification of the pore-size-distribution of CMS to increase the molecular selectivity.
View Article and Find Full Text PDFThis study describes the molecular-level design of a new type of filtration membrane made of crosslinked cyclodextrins-inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel-like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape-sensitive.
View Article and Find Full Text PDFSince the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging.
View Article and Find Full Text PDFBiofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium (Pd) nanoparticles. The modified membranes were evaluated for antibacterial and antifouling efficacy in a monoculture species biofilm (i.
View Article and Find Full Text PDFMacromol Rapid Commun
April 2016
Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane's ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes.
View Article and Find Full Text PDFWe present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process.
View Article and Find Full Text PDF