Converting angular momentum between different degrees of freedom within a magnetic material results from a dynamic interplay between electrons, magnons, and phonons. This interplay is pivotal to implementing spintronic device concepts that rely on spin angular momentum transport. We establish a new concept for long-range angular momentum transport that further allows us to address and isolate the magnonic contribution to angular momentum transport in a nanostructured metallic ferromagnet.
View Article and Find Full Text PDFWe report on the impact of nonlinear four-magnon scattering on magnon transport in microstructured CoFe waveguides with low magnetic damping. We determine the magnon propagation length with microfocused Brillouin light scattering over a broad range of excitation powers and detect a decrease of the attenuation length at high powers. This is consistent with the onset of nonlinear four-magnon scattering.
View Article and Find Full Text PDFWe report ultralow intrinsic magnetic damping in CoFe heterostructures, reaching the low 10 regime at room temperature. By using a broadband ferromagnetic resonance technique in out-of-plane geometry, we extracted the dynamic magnetic properties of several CoFebased heterostructures with varying ferromagnetic layer thicknesses. By measuring radiative damping and spin pumping effects, we found the intrinsic damping of a 26 nm thick sample to be ≲ 3.
View Article and Find Full Text PDF