Publications by authors named "Luis Fernando Garcia-Alles"

Terpenes are high-value chemicals which can be produced by engineered cyanobacteria from sustainable resources, solar energy, water and CO. We previously reported that the euryhaline unicellular cyanobacteria sp. PCC 6803 (S.

View Article and Find Full Text PDF

The presentation of lipid antigens to T cells is mediated by the CD1 proteins. Purified functional CD1/lipid complexes are valuable tools to investigate such immune processes. Here, we describe how these complexes can be prepared in vitro, how they can be purified by chromatofocusing and how to control their antigen-loading status by isoelectric focusing.

View Article and Find Full Text PDF

CD1b-restricted T lymphocytes recognize a large diversity of mycobacterial lipids, which differ in their hydrophilic heads and the structure of their acyl appendages. Both moieties participate in the antigenicity of lipid Ags, but the structural constraints governing binding to CD1b and generation of antigenic CD1b:lipid Ag complexes are still poorly understood. Here, we investigated the structural requirements conferring antigenicity to Mycobacterium tuberculosis sulfoglycolipid Ags using a combination of CD1b:lipid binding and T cell activation assays with both living dendritic cells and plate-bound recombinant soluble CD1b.

View Article and Find Full Text PDF

Complexes between CD1 molecules and self or microbial glycolipids represent important immunogenic ligands for specific subsets of T cells. However, the function of one of the CD1 family members, CD1e, has yet to be determined. Here, we show that the mycobacterial antigens hexamannosylated phosphatidyl-myo-inositols (PIM6) stimulate CD1b-restricted T cells only after partial digestion of the oligomannose moiety by lysosomal alpha-mannosidase and that soluble CD1e is required for this processing.

View Article and Find Full Text PDF

Dihydroxyacetone (Dha) kinases are homologous proteins that use different phosphoryl donors, a multiphosphoryl protein of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system in bacteria, ATP in animals, plants, and some bacteria. The Dha kinase of Escherichia coli consists of three subunits, DhaK and DhaL, which are colinear to the ATP-dependent Dha kinases of eukaryotes, and the multiphosphoryl protein DhaM. Here we show the crystal structure of the DhaK subunit in complex with Dha at 1.

View Article and Find Full Text PDF

Enzyme I (EI), the first component of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS), consists of an N-terminal domain with the phosphorylation site (His-189) and a C-terminal domain with the PEP binding site. Here we use C3-substituted PEP analogues as substrates and inhibitors and the EI(C502A) mutant to characterize structure-activity relationships of the PEP binding site. EI(C502A) is 10 000 times less active than wild-type EI [EI(wt)] with PEP as the substrate, whereas the two forms are equally active with ZClPEP.

View Article and Find Full Text PDF

Thirteen glucose analogues bearing electrophilic groups were synthesized (five of them for the first time) and screened as inhibitors of the glucose transporter (EIIGlc) of the Escherichia coli phosphoenolpyruvate-sugar phosphotransferase system (PTS). 2',3'-Epoxypropyl beta-d-glucopyranoside (3a) is an inhibitor and also a pseudosubstrate. Five analogues are inhibitors of nonvectorial Glc phosphorylation by EIIGlc but not pseudosubstrates.

View Article and Find Full Text PDF

The synthesis of 10 new phosphoenolpyruvate (PEP) analogues with modifications in the phosphate and the carboxylate function is described. Included are two potential irreversible inhibitors of PEP-utilizing enzymes. One incorporates a reactive chloromethylphosphonate function replacing the phosphate group of PEP.

View Article and Find Full Text PDF

Four phosphoenolpyruvate (PEP) derivatives, carrying reactive or activable chemical functions in each of the three chemical regions of PEP, were assayed as alternative substrates of enzyme I (EI) of the Escherichia coli PEP:glucose phosphotransferase system. The Z- and E-isomers of 3-chlorophosphoenolpyruvate (3-Cl-PEP) were substrates, presenting K(m) values of 0.08 and 0.

View Article and Find Full Text PDF