Introduction: The study of yield and resistance/tolerance to pest are related traits fundamental for maize breeding programs. Genomic selection (GS), which uses all marker information to calculate genomic breeding values, is presented as an emerging alternative to phenotypic and marker-assisted selections for improving complex traits controlled by many genes with small effects. Therefore, although phenotypic selection (PS) has been effective for increasing resistance and yield under high infestation with maize stem borers, higher genetic gains are expected to be obtained through GS based on the complex architecture of both traits.
View Article and Find Full Text PDFInbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte.
View Article and Find Full Text PDFVery little is known about how domestication was constrained by the quantitative genetic architecture of crop progenitors and how quantitative genetic architecture was altered by domestication. Yang et al. [C.
View Article and Find Full Text PDFPlants have the capacity to respond to conserved molecular features known as microbe-associated molecular patterns (MAMPs). The goal of this work was to assess variation in the MAMP response in sorghum, to map loci associated with this variation, and to investigate possible connections with variation in quantitative disease resistance. Using an assay that measures the production of reactive oxygen species, we assessed variation in the MAMP response in a sorghum association mapping population known as the sorghum conversion population (SCP).
View Article and Find Full Text PDF, which causes ear, kernel and stem rots, has been reported as the most prevalent species on maize worldwide. Kernel infection by results in reduced seed yield and quality as well as fumonisin contamination, and may affect seedling traits like germination rate, entire plant seedling length and weight. Maize resistance to is a quantitative and complex trait controlled by numerous genes with small effects.
View Article and Find Full Text PDFBackground: Corn borers constitute an important pest of maize around the world; in particular Sesamia nonagrioides Lefèbvre, named Mediterranean corn borer (MCB), causes important losses in Southern Europe. Methods of selection can be combined with transgenic approaches to increase the efficiency and durability of the resistance to corn borers. Previous studies of the genetic factors involved in resistance to MCB have been carried out using bi-parental populations that have low resolution or using association inbred panels that have a low power to detect rare alleles.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
The process of evolution under domestication has been studied using phylogenetics, population genetics-genomics, quantitative trait locus (QTL) mapping, gene expression assays, and archaeology. Here, we apply an evolutionary quantitative genetic approach to understand the constraints imposed by the genetic architecture of trait variation in teosinte, the wild ancestor of maize, and the consequences of domestication on genetic architecture. Using modern teosinte and maize landrace populations as proxies for the ancestor and domesticate, respectively, we estimated heritabilities, additive and dominance genetic variances, genetic-by-environment variances, genetic correlations, and genetic covariances for 18 domestication-related traits using realized genomic relationships estimated from genome-wide markers.
View Article and Find Full Text PDFinfects maize, causing ear rot, yield loss and contamination by fumonisin mycotoxins. The fungus can be transmitted via kernels and cause systemic infection in maize. Maize resistance to the fungus may occur at different developmental stages, from seedling to maturity.
View Article and Find Full Text PDFThe Mediterranean corn borer (MCB), , is a major pest of maize, , in Mediterranean countries, inflicting significant kernel yield losses. For that reason, it necessary to know the genetic mechanisms that regulate the agronomic and resistance traits. A quantitative trait loci (QTL) mapping study for yield, resistance against MCB attack, and other relevant agronomic traits was performed using a recombinant inbred line (RIL) population derived from the cross A637 × A509 that is expected to segregate for yield, and ear, and stalk resistance to MCB.
View Article and Find Full Text PDFDespite the importance of heterosis and the efforts to comprehend this phenomenon, its molecular bases are still unknown. In this study, we intended to detect Quantitative trait loci (QTL) for mid-parent heterosis under infestation with the Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) using a North Carolina design III approach with a RIL population derived from a European flint inbred (EP42) × American dent inbred (A637) cross.
View Article and Find Full Text PDFLeaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D), which is responsible for the major leaf shapes in cotton.
View Article and Find Full Text PDFPrevious results suggest a relationship between maize hydroxycinnamate concentration in the pith tissues and resistance to stem tunneling by Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) larvae. This study performs a more precise experiment, mapping an F2 derived from the cross between two inbreds with contrasting levels for hydroxycinnamates EP125 × PB130.
View Article and Find Full Text PDFBackground: A QTL mapping study for maize resistance to the Mediterranean corn borer (MCB) was performed with a RIL population derived from the cross B73 × CML103. To develop commercial inbreds of maize resistant to the MCB for use in Europe, it would be useful to transfer resistance from tropical germplasm like the subtropical inbred CML103 to temperate lines. The inbred B73 was chosen as representative of the Stiff Stock heterotic group, a major heterotic group used in hybrid grown in both North American and Europe.
View Article and Find Full Text PDFBackground: Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs.
Results: Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance.