Publications by authors named "Luis F Michea"

Background: Rac1 upregulation has been implicated in salt-sensitive hypertension as a modulator of mineralocorticoid receptor (MR) activity. Rac1 could affect the expression of oxidative stress markers, such as hemoxigenase-1 (HO-1) or nuclear factor-B (NF-κB), and the expression of neutrophil gelatinase-associated lipocalin (NGAL), a cytokine upregulated upon MR activation.

Aim: We evaluated RAC1 expression in relation of high salt intake and association with MR, NGAL, HO-1, and NF-κB expression, mineralo- and glucocorticoids levels, and inflammatory parameters.

View Article and Find Full Text PDF

High plasmatic levels of aldosterone cause hypertension and contribute to progressive organ damage to the heart, vasculature, and kidneys. Recent studies have demonstrated a role for the immune system in these pathological processes. Aldosterone promotes an inflammatory state characterized by vascular infiltration of immune cells, reactive oxidative stress, and proinflammatory cytokine production.

View Article and Find Full Text PDF

Excessive production of aldosterone leads to the development of hypertension and cardiovascular disease by generating an inflammatory state that can be promoted by T cell immunity. Because nature and intensity of T cell responses is controlled by dendritic cells (DCs), it is important to evaluate whether the function of these cells can be modulated by aldosterone. In this study we show that aldosterone augmented the activation of CD8(+) T cells in a DC-dependent fashion.

View Article and Find Full Text PDF

The response of renal inner medullary (IM) collecting duct cells (mIMCD3) to high NaCl involves increased expression of Gadd45 and p53, both of which have important effects on growth and survival of the cells. However, mIMCD3 cells, being immortalized by SV40, proliferate rapidly, which is known to sensitize cells to high NaCl, whereas IM cells in situ proliferate very slowly and survive much higher levels of NaCl. In the present studies, we have examined the importance of Gadd45 and p53 for survival of normal IM cells in their usual high-NaCl environment by using more slowly proliferating second-passage mouse inner medullary epithelial (p2mIME) cells and comparing cells from wild-type and gene knockout mice.

View Article and Find Full Text PDF

Chronic excess ingestion of nonsteroid anti-inflammatory drugs causes renal medullary necrosis. Previously, using an immortalized line of mouse inner medullary collecting ducts cells (mIMCD3), we found that acetaminophen, salicylic acid, and caffeine are toxic, and the effects of acetaminophen and caffeine are strongly additive. Furthermore, toxicity was greater in proliferating than in nonproliferating cells.

View Article and Find Full Text PDF