Free Radic Biol Med
December 2024
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin gene. The huntingtin protein (Htt) is ubiquitously expressed and localized in several organelles, including endosomes, where it plays an essential role in intracellular trafficking. Presymptomatic HD is associated with a failure in energy metabolism and oxidative stress.
View Article and Find Full Text PDFBrain Res
January 2024
Emerging evidence highlights the relevance of the protein post-translational modification by SUMO (Small Ubiquitin-like Modifier) in the central nervous system for modulating cognition and plasticity in health and disease. In these processes, astrocyte-to-neuron crosstalk mediated by extracellular vesicles (EVs) plays a yet poorly understood role. Small EVs (sEVs), including microvesicles and exosomes, contain a molecular cargo of lipids, proteins, and nucleic acids that define their biological effect on target cells.
View Article and Find Full Text PDFLife stressors can wreak havoc on our health, contributing to mood disorders like major depressive disorder (MDD), a widespread and debilitating condition. Unfortunately, current treatments and diagnostic strategies fall short of addressing these disorders, highlighting the need for new approaches. In this regard, the relationship between MDD, brain inflammation (neuroinflammation), and systemic inflammation in the body may offer novel insights.
View Article and Find Full Text PDFThe M105I point mutation in α-SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein-alpha) leads in mice to a complex phenotype known as hyh (hydrocephalus with hop gait), characterized by cortical malformation and hydrocephalus, among other neuropathological features. Studies performed by our laboratory and others support that the hyh phenotype is triggered by a primary alteration in embryonic neural stem/progenitor cells (NSPCs) that leads to a disruption of the ventricular and subventricular zones (VZ/SVZ) during the neurogenic period. Besides the canonical role of α-SNAP in SNARE-mediated intracellular membrane fusion dynamics, it also negatively modulates AMP-activated protein kinase (AMPK) activity.
View Article and Find Full Text PDFSeveral vaccines have been developed to control the COVID-19 pandemic. CoronaVac, an inactivated SARS-CoV-2 vaccine, has demonstrated safety and immunogenicity, preventing severe COVID-19 cases. We investigate the safety and non-inferiority of two immunization schedules of CoronaVac in a non-inferiority trial in healthy adults.
View Article and Find Full Text PDFExposure to an adverse prenatal environment can influence fetal development and result in long-lasting changes in the offspring. However, the association between maternal exposure to stressful events during pregnancy and the achievement of pre-reading skills in the offspring is unknown. Here we examined the association between prenatal exposure to the Chilean high-magnitude earthquake that occurred on February 27th, 2010 and the development of early reading precursors skills (listening comprehension, print knowledge, alphabet knowledge, vocabulary, and phonological awareness) in children at kindergarten age.
View Article and Find Full Text PDFEstrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS).
View Article and Find Full Text PDFCell death by glutamate excitotoxicity, mediated by N-methyl-D-aspartate (NMDA) receptors, negatively impacts brain function, including but not limited to hippocampal neurons. The NF-κB transcription factor (composed mainly of p65/p50 subunits) contributes to neuronal death in excitotoxicity, while its inhibition should improve cell survival. Using the biotin switch method, subcellular fractionation, immunofluorescence, and luciferase reporter assays, we found that NMDA-stimulated NF-κB activity selectively in hippocampal neurons, while endothelial nitric oxide synthase (eNOS), an enzyme expressed in neurons, is involved in the S-nitrosylation of p65 and consequent NF-κB inhibition in cerebrocortical, i.
View Article and Find Full Text PDFStress is a widespread problem in today's societies, having important consequences on brain function. Among the plethora of mechanisms involved in the stress response at the molecular level, the role of microRNAs (miRNAs) is beginning to be recognized. The control of gene expression by these noncoding RNAs makes them essential regulators of neuronal and synaptic physiology, and alterations in their levels have been associated with pathological conditions and mental disorders.
View Article and Find Full Text PDFIn the last few decades, it has been established that astrocytes play key roles in the regulation of neuronal morphology. However, the contribution of astrocyte-derived small extracellular vesicles (sEVs) to morphological differentiation of neurons has only recently been addressed. Here, we showed that cultured astrocytes expressing a GFP-tagged version of the stress-regulated astrocytic enzyme Aldolase C (Aldo C-GFP) release small extracellular vesicles (sEVs) that are transferred into cultured hippocampal neurons.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have fueled ample translation for the treatment of immune-mediated diseases. They exert immunoregulatory and tissue-restoring effects. MSC-mediated transfer of mitochondria (MitoT) has been demonstrated to rescue target organs from tissue damage, yet the mechanism remains to be fully resolved.
View Article and Find Full Text PDFAfter sperm-oocyte fusion, cortical granules (CGs) located in oocyte cortex undergo exocytosis and their content is released into the perivitelline space to avoid polyspermy. Thus, cortical granule exocytosis (CGE) is a key process for fertilization success. We have demonstrated that alpha-SNAP -and its functional partner NSF- mediate fusion of CGs with the plasma membrane in mouse oocytes.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Upon demyelination, oligodendrocyte progenitor cells (OPCs) are activated and they proliferate, migrate and differentiate into myelin-producing oligodendrocytes. Besides OPCs, neural stem cells (NSCs) may respond to demyelination and generate oligodendrocytes.
View Article and Find Full Text PDFRadial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface.
View Article and Find Full Text PDFAims: Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive abnormalities in cognitive function, mental state, and motor control. HD is characterized by a failure in brain energy metabolism. It has been proposed that monocarboxylates, such as lactate, support brain activity.
View Article and Find Full Text PDFRepetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells.
View Article and Find Full Text PDFThe balance between ovarian folliculogenesis and follicular atresia is critical for female fertility and is strictly regulated by a complex network of neuroendocrine and intra-ovarian signals. Despite the numerous functions executed by granulosa cells (GCs) in ovarian physiology, the role of multifunctional proteins able to simultaneously coordinate/modulate several cellular pathways is unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (α-SNAP) is a multifunctional protein that participates in SNARE-mediated membrane fusion events.
View Article and Find Full Text PDFThe role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs) proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs) rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs.
View Article and Find Full Text PDFNeurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored.
View Article and Find Full Text PDFAdult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs), which reside in a unique and specialized microenvironment known as "neurogenic niche".
View Article and Find Full Text PDFDisruption/denudation of the ependymal lining has been associated with the pathogenesis of various human CNS disorders, including hydrocephalus, spina bifida aperta, and periventricular heterotopia. It has been traditionally considered that ependymal denudation is a consequence of mechanical forces such as ventricular enlargement. New evidence indicates that ependymal disruption can precede ventricular dilation, but the cellular and molecular mechanisms involved in the onset of ependymal denudation are unknown.
View Article and Find Full Text PDFMost cells of the developing mammalian brain derive from the ventricular (VZ) and the subventricular (SVZ) zones. The VZ is formed by the multipotent radial glia/neural stem cells (NSCs) while the SVZ harbors the rapidly proliferative neural precursor cells (NPCs). Evidence from human and animal models indicates that the common history of hydrocephalus and brain maldevelopment starts early in embryonic life with disruption of the VZ and SVZ.
View Article and Find Full Text PDF