Publications by authors named "Luis F Aguilar"

In Chile, Atlantic salmon and rainbow trout face significant production challenges due to the presence of Flavobacterium psychrophilum, which generates severe disease issues and economic losses. To address this, the salmon industry relies on vaccines and antibiotics, the latter raising concerns about bacterial resistance. For that reason, our study explores an alternative strategy for controlling F.

View Article and Find Full Text PDF

pH regulation is essential to allow normal cell function, and their imbalance is associated with different pathologic situations, including cancer. In this study, we present the synthesis of 2-(((2-aminoethyl)imino)methyl)phenol (HL1) and the iron (III) complex (Fe(L1)Br, ()), confirmed by X-ray diffraction analysis. The absorption and emission properties of complex were assessed in the presence and absence of different physiologically relevant analytes, finding a fluorescent turn-on when OH was added.

View Article and Find Full Text PDF

The development of fluorescent pigments is an area of interest in several research fields due to their high sensitivity. In the current study-eight known and three new N,N-dimethylamino-chalcones (12a-k) were synthesized with good yields using the Claisen-Schmidt reaction. For each molecular system, the photophysical properties, including the maximum absorption wavelength (λ), molar absorption coefficient (ε), maximum excitation wavelength (λ), maximum emission wavelength (λ), Stokes Shift (Δλ), fluorescence quantum yield (Φ), fluorescence lifetime (τ), radiative and non-radiative rate constants (k and k, respectively) were evaluated.

View Article and Find Full Text PDF

Cell-penetrating peptides rich in arginine are good candidates to be considered as antibacterial compounds, since peptides have a lower chance of generating resistance than commonly used antibiotics. Model homopeptides are a useful tool in the study of activity and its correlation with a secondary structure, constituting an initial step in the construction of functional heteropeptides. In this report, the 11-residue arginine homopeptide (R11) was used to determine its antimicrobial activity against and and the effect on the secondary structure, caused by the substitution of the arginine residue by the amino acids Ala, Pro, Leu and Trp, using the scanning technique.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers synthesized five new resveratrol-dimers and one resveratrol-monomer, using a specific compound as a core, to test their effectiveness against various harmful bacteria.
  • * The new compounds showed strong antibacterial activity against Listeria monocytogenes, outperforming chloramphenicol, and a potential mechanism was identified that could help develop better treatments for listeriosis in the future.
View Article and Find Full Text PDF

Studying the variables that affect the membrane fusion mechanism of enveloped viruses is important for developing new strategies to combat viral infections. We analysed the effects of lipid vesicle cholesterol content on membrane fusion that is facilitated by infectious salmon anaemia virus (ISAV) fusion peptides. Lipid mixing assays were performed to study membrane fusion in large unilamellar vesicles (LUV) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), dipalmitoylphosphatidylcholine (DPPC) and cholesterol.

View Article and Find Full Text PDF

Mercury (Hg) is an element with high toxicity, especially to the nervous system, and fluorescent pigments are used to visualize dynamic processes in living cells. A little explored fluorescent core is chalcone. Herein, we synthesized chalcone (2E)-3-(4-(dimethylamino)phenyl)-1-phenylprop-2-en-1-one (8) and assessed its photophysical properties.

View Article and Find Full Text PDF

Neuroblastoma is one of the most frequent types of cancer found in infants, and traditional chemotherapy has limited efficacy against this pathology. Thus, the development of new compounds with higher activity and selectivity than traditional drugs is a current challenge in medicinal chemistry research. In this study, we report the synthesis of 21 chalcones with antiproliferative activity and selectivity against the neuroblastoma cell line SH-SY5Y.

View Article and Find Full Text PDF

Monoamine oxidases (MAOs) are attractive targets in drug design. The inhibition of one of the isoforms (A or B) is responsible for modulating the levels of different neurotransmitters in the central nervous system, as well as the production of reactive oxygen species. Molecules that act selectively on one of the MAO isoforms have been studied deeply, and coumarin has been described as a promising scaffold.

View Article and Find Full Text PDF

Cancer is the second death cause worldwide, with breast and colon cancer among the most prevalent types. Traditional treatment strategies have several side effects that inspire the development of novel anticancer agents derived from natural sources, like chalcone derivatives. For this investigation, twenty-three chalcones () were synthesized and evaluated as antiproliferative agents against MCF-7 and Caco-2 cells, finding three and two compounds with similar or higher antiproliferative activity than daunorubicin, while only two chalcones showed better selectivity indexes than daunorubicin on MCF-7.

View Article and Find Full Text PDF

Malaria is an infectious illness, affecting vulnerable populations in Third World countries. Inspired by natural products, indole alkaloids have been used as a nucleus to design new antimalarial drugs. So, eighteen oxindole derivatives, analogues were obtained with moderate to excellent yields.

View Article and Find Full Text PDF

Monoamine oxidases (MAOs) are important targets in medicinal chemistry, as their inhibition may change the levels of different neurotransmitters in the brain, and also the production of oxidative stress species. New chemical entities able to interact selectively with one of the MAO isoforms are being extensively studied, and chalcones proved to be promising molecules. In the current work, we focused our attention on the understanding of theoretical models that may predict the MAO-B activity and selectivity of new chalcones.

View Article and Find Full Text PDF

Multiple antibiotic-resistant strains of can cause life-threatening infections. Bacterial enoyl-acyl carrier protein (ACP) reductases (ENRs) are considered critical targets for developing antibiotics. Our current study aims to identify inhibitors of ENRs (FabI and FabV).

View Article and Find Full Text PDF

Epirubicin is a cytotoxic drug used in the treatment of different types of cancer and increasing evidence suggests that its target is cell membranes. In order to gain insight on its toxic effects, intact red blood cells (RBC), human erythrocyte membranes and molecular models were used. The latter consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes found mainly in the outer and inner monolayers of the human erythrocyte membrane, respectively.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in elderly people. Existent therapies are directed at alleviating some symptoms, but are not effective in altering the course of the disease.

Methods: Based on our previous study that showed that an Aβ-interacting small peptide protected against the toxic effects of amyloid-beta peptide (Aβ), we carried out an array of in silico, in vitro, and in vivo assays to identify a molecule having neuroprotective properties.

View Article and Find Full Text PDF

The inhibition of the enzyme acetylcholinesterase (AChE) is a frequently used therapeutic option to treat Alzheimer's disease (AD). By decreasing the levels of acetylcholine degradation in the synaptic space, some cognitive functions of patients suffering from this disease are significantly improved. Rivastigmine is one of the most widely used AChE inhibitors.

View Article and Find Full Text PDF

Donepezil is used to treat symptomatically the Alzheimer's disease (AD). This drug is a specific inhibitor of the enzyme acetylcholinesterase (AChE), whose main physiological function is to hydrolyze the neurotransmitter acetylcholine. The main objective of this work was to study the effect of donepezil on human erythrocytes as AChE is present in its membrane.

View Article and Find Full Text PDF

Background: Ephedra chilensis K Presl, known locally as pingo-pingo, is a Chilean endemic plant used in traditional medicine as an anti-inflammatory and used in other treatments. However, unlike for the other Ephedra species, there have been no reports on the antioxidant and cytotoxic effects of this plant. The present study aims to explore the potential applications of E.

View Article and Find Full Text PDF

, a highly venomous pit viper distributed from Colombia and northwestern Peru in South America to southern Mexico, is responsible for most snake bites in Central America, affecting especially young agricultural workers. A 17-year-old male from a rural area in northern Honduras was admitted at San Francisco Hospital after a bite that had occurred 3 days earlier. The puncture wounds were located on the first toe of the right foot.

View Article and Find Full Text PDF

The interaction and protective effect of caffeic acid (CA) on human erythrocytes (RBC) and molecular models of its membrane were studied. The latter consisted of bilayers built up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray diffraction and differential scanning calorimetry results indicated that CA induced structural and thermotropic perturbations in multilayers and vesicles of DMPC.

View Article and Find Full Text PDF

The interactions and the protective effect of epigallocatechin gallate (EGCG) on human erythrocytes (RBC) and molecular models of its membrane were investigated. The latter consisted of bilayers built- up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray diffraction and differential scanning calorimetry experiments showed that EGCG induced significant structural and thermotropic perturbations in multilayers and vesicles of DMPC; however, these effects were not observed in DMPE.

View Article and Find Full Text PDF

This study was aimed at elucidating the molecular mechanisms of the interaction of the antitumor alkylphospholipid drug miltefosine with human erythrocytes (RBC) and molecular models of its membrane. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. X-ray results showed that the drug interacted with DMPC multilayers; however, no effects on DMPE were detected.

View Article and Find Full Text PDF

Previous work demonstrated that Lys homopeptides with an odd number of residues (9, 11 and 13) were capable of inhibiting the growth of Gram-positive bacteria in a broader spectrum and more efficiently than those with an even number of Lys residues or Arg homopeptides of the same size. Indeed, all Gram-positive bacteria tested were totally inhibited by 11-residue Lys homopeptides. In the present work, a wide variety of Gram-negative bacteria were used to evaluate the inhibitory activity of chemically synthesized homopeptides of L-Lys and L-Arg ranging from 7 to 14 residues.

View Article and Find Full Text PDF

A new headspace solid-phase micro-extraction (HS-SPME) method followed by gas chromatography with pulsed flame photometric detection (GC-PFPD) analysis has been developed for the simultaneous determination of 11 organotin compounds, including methyl-, butyl-, phenyl- and octyltin derivates, in human urine. The methodology has been validated by the analysis of urine samples fortified with all analytes at different concentration levels, and recovery rates above 87% and relative precisions between 2% and 7% were obtained. Additionally, an experimental-design approach has been used to model the storage stability of organotin compounds in human urine, demonstrating that organotins are highly degraded in this medium, although their stability is satisfactory during the first 4 days of storage at 4 °C and pH=4.

View Article and Find Full Text PDF

Changes in the cholesterol (Chol) content of biological membranes are known to alter the physicochemical properties of the lipid lamella and consequently the function of membrane-associated enzymes. To characterize these changes, we used steady-state and time resolved fluorescence spectroscopy and two photon-excitation microscopy techniques. The membrane systems were chosen according to the techniques that were used: large unilamellar vesicles (LUVs) for cuvette and giant unilamellar vesicles (GUVs) for microscopy measurements; they were prepared from dipalmitoyl phosphatidylcholine (DPPC) and dioctadecyl phosphatidylcholine (DOPC) in mixtures that are well known to form lipid domains.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc9fn0vl72te5hd9hi4954c56vrb1ij7q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once