Publications by authors named "Luis E Farinha-Arcieri"

Marfan Syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in the FBN1 gene. To investigate the molecular mechanisms of pathogenesis for the syndrome, we genetically modified the FBN1 gene in a line of induced pluripotent stem cells (hiPSCs) derived from a healthy donor using the CRISPR/Cas9 gene editing technology. The sublines described here were characterized according to established criteria and were shown to maintain pluripotency, three germ layer differentiation potential and genomic integrity.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is an autosomal dominant disease affecting cardiovascular, ocular and skeletal systems. It is caused by mutations in the fibrillin-1 (FBN1) gene, leading to structural defects of connective tissue and increased activation of TGF-β. Angiotensin II (ang-II) is involved in TGF-β activity and in bone mass regulation.

View Article and Find Full Text PDF

Marfan Syndrome (MFS) is a pleiotropic and autosomal dominant condition caused by pathogenic variants in FBN1. Although fully penetrant, clinical variability is frequently observed among patients and there are only few genotype-phenotype correlations described so far. Here, we describe the generation and characterization of hiPSC lines derived from two unrelated MFS patients harboring heterozygous variants in FBN1.

View Article and Find Full Text PDF

Purpose: Fibrillin-1 and -2 are major components of tissue microfibrils that compose the ciliary zonule and cornea. While mutations in human fibrillin-1 lead to ectopia lentis, a major manifestation of Marfan syndrome (MFS), in mice fibrillin-2 can compensate for reduced/lack of fibrillin-1 and maintain the integrity of ocular structures. Here we examine the consequences of a heterozygous dominant-negative mutation in the Fbn1 gene in the ocular system of the mgΔ mouse model for MFS.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a connective tissue disease caused by variants in the FBN1 gene. Nevertheless, other genes influence the manifestations of the disease, characterized by high clinical variability even within families. We mapped modifier loci for cardiovascular and skeletal manifestations in the mg∆ mouse model for MFS and the synthenic loci in the human genome.

View Article and Find Full Text PDF

Aims: Cardiovascular manifestations are a major cause of mortality in Marfan syndrome (MFS). Animal models that mimic the syndrome and its clinical variability are instrumental for understanding the genesis and risk factors for cardiovascular disease in MFS. This study used morphological and ultrastructural analysis to the understanding of the development of cardiovascular phenotypes of the the mgΔloxPneo model for MFS.

View Article and Find Full Text PDF

Objectives: Since it has been reported that in humans there is a relationship between human respiratory syncytial virus (hRSV)-specific cytotoxic T lymphocytes and symptom reduction, and that the polymerase (structural L protein) is highly conserved among different strains, this work aimed to identify the CD8 T cell epitopes H-2(d) restricted within the L sequence for immunization purposes.

Methods: We screened the hRSV strain A2 L protein sequence using two independent algorithms, SYFPEITHI and PRED/(BALB/c), to predict CD8 T cell epitopes. The selected peptides were synthesized and used to immunize BALB/c mice for the evaluation of T cell response.

View Article and Find Full Text PDF

Native type I heat-labile toxins (LTs) produced by enterotoxigenic Escherichia coli (ETEC) strains exert strong adjuvant effects on both antibody and T cell responses to soluble and particulate antigens following co-administration via mucosal routes. However, inherent enterotoxicity and neurotoxicity (following intra-nasal delivery) had reduced the interest in the use of these toxins as mucosal adjuvants. LTs can also behave as powerful and safe adjuvants following delivery via parenteral routes, particularly for activation of cytotoxic lymphocytes.

View Article and Find Full Text PDF

Human respiratory syncytial virus (HRSV) is the major pathogen leading to respiratory disease in infants and neonates worldwide. An effective vaccine has not yet been developed against this virus, despite considerable efforts in basic and clinical research. HRSV replication is independent of the nuclear RNA processing constraints, since the virus genes are adapted to the cytoplasmic transcription, a process performed by the viral RNA-dependent RNA polymerase.

View Article and Find Full Text PDF

Objectives: To construct a recombinant baculovirus expressing the fiber knob domain of human adenovirus type 2 modified by the insertion of a foreign peptide, purify this protein after its production in insect cells, and to test its properties.

Methods: Recombinant baculoviruses expressing the fiber knob were produced in Sf9 cells. The recombinant fiber knob was recovered from culture supernatants of infected cells and purified by a combination of Ni-NTA and ion-exchange chromatography.

View Article and Find Full Text PDF

The nucleoprotein (N) and the phosphoprotein (P) of the human respiratory syncytial virus (HRSV), A2 strain, were cloned into pMAL-c2e vector. The proteins were expressed fused with the maltose-binding protein (MBP) and were preferentially found in the soluble fraction of the bacterial lysate. After their purification using amylose resin, almost no other protein was detected in SDS-PAGE.

View Article and Find Full Text PDF