Publications by authors named "Luis E Castaneda"

Kidney transplantation (KTx) requires immunosuppressive drugs such as Tacrolimus (TAC) which is mainly metabolized by CYP3A5. TAC is routinely monitored by trough levels (C) although it has not shown to be a reliable marker. The area-under-curve (AUC) is a more realistic measure of drug exposure, but sampling is challenging in pediatric patients.

View Article and Find Full Text PDF

Adaptation to warming conditions involves increased heat tolerance and metabolic changes to reduce maintenance costs and maximize biological functions close to fitness. Evidence shows that energy metabolism evolves in response to warming conditions, but we know little about how heat stress intensity determines the evolutionary responses of metabolism and life history traits. Here, we evaluated the evolutionary responses of energy metabolism and life-history traits to artificial selection for increasing heat tolerance in Drosophila subobscura, using 2 protocols to measure and select heat tolerance: slow and fast ramping protocols.

View Article and Find Full Text PDF

Cyclosporine (CsA) and tacrolimus (TAC) are immunosuppressant drugs characterized by a narrow therapeutic range and high pharmacokinetic variability. The effect of polymorphisms in genes related to the metabolism and transport of these drugs, namely , , and genes, has been evaluated in diverse populations. However, the impact of these polymorphisms on drug disposition is not well established in Latin American populations.

View Article and Find Full Text PDF

The gut microbiota can contribute to host physiology leading to an increase of resistance to abiotic stress conditions. For instance, temperature has profound effects on ectotherms, and the role of the gut microbiota on the thermal tolerance of ectotherms is a matter of recent research. However, most of these studies have been focused on single static temperatures instead of evaluating thermal tolerance in a wide range of stressful temperatures.

View Article and Find Full Text PDF

Tacrolimus (TAC) and mycophenolic acid (MPA) are the main immunosuppressive drugs used in pediatric kidney transplantation. Single nucleotide polymorphisms (SNPs) in metabolizing enzymes and transporters might influence plasma levels of these drugs. Herein, we sought to determine the influence of SNPs on , and genes in Chilean pediatric kidney recipients using TAC and MPA.

View Article and Find Full Text PDF

Ectotherms can respond to global warming via evolutionary change of their upper thermal limits (CT ). Thus, the estimation of CT and its evolutionary potential is crucial to determine their vulnerability to global warming. However, CT estimations depend on the thermal stress intensity, and it is not completely clear whether its evolutionary capacity can be affected.

View Article and Find Full Text PDF

Purpose: Developmental dysplasia of the hip (DDH) encompasses a wide pathological spectrum, from mild acetabular dysplasia to complete congenital hip dislocation at birth. Screening policies have been implemented in an effort to effectively identify and treat patients with DDH. Since 2009 there has been a national DDH programme in Chile.

View Article and Find Full Text PDF

The high metabolic activity associated with endurance flights and intense fuelling of migrant birds may produce large quantities of reactive oxygen species, which cause oxidative damage. Yet it remains unknown how long-lived birds prepare for oxidative challenges prior to extreme flights. We combined blood measurements of oxidative status and enzyme and fat metabolism in Hudsonian godwits (Limosa haemastica, a long-lived shorebird) before they embarked on non-stop flights longer than 10,000 km during their northbound migrations.

View Article and Find Full Text PDF

Evolutionary change of thermal traits (i.e., heat tolerance and behavioural thermoregulation) is one of the most important mechanisms exhibited by organisms to respond to global warming.

View Article and Find Full Text PDF

Phyllosphere bacteria have received little attention despite their important roles in shaping plant performance traits. In this study, we characterize the bacterial communities on leaves of native trees inhabiting sclerophyllous forests in central Chile, one of the world's biodiversity hotspots. Additionally, we provide profiles of bacterial communities on grape leaves and berries of organic and conventional vineyards.

View Article and Find Full Text PDF

Human presence at intertidal areas could impact coastal biodiversity, including migratory waterbird species and the ecosystem services they provide. Assessing this impact is therefore essential to develop management measures compatible with migratory processes and associated biodiversity. Here, we assess the effects of human presence on the foraging opportunities of Hudsonian godwits (Limosa haemastica, a trans-hemispheric migratory shorebird) during their non-breeding season on Chiloé Island, southern Chile.

View Article and Find Full Text PDF

Agriculture is one of the main drivers of land conversion, and agriculture practices can impact on microbial diversity. Here we characterized the phyllosphere fungal diversity associated with Carménère grapevines under conventional and organic agricultural management. We also explored the fungal diversity present in the adjacent sclerophyllous forests to explore the potential role of native forest on vineyard phyllosphere.

View Article and Find Full Text PDF

While there are substantial studies suggesting that characteristics of wine are related to regional microbial community composition (microbial terroir), there has been little discussion about what factors affect variation in regional microbial community composition. In this study, we compared the microbial community composition of leaves and berries of a grape variety (Carmenere) from six different Chilean vineyards within 35 km of each other. In order to determine relationships between spatial proximity and microbial compositional dissimilarity, we sequenced amplicons of the internal transcribed spacer (ITS) region for fungi and 16S rRNA gene for bacteria.

View Article and Find Full Text PDF

Mediterranean biomes are biodiversity hotspots, and vineyards are important components of the Mediterranean landscape. Over the last few decades, the amount of land occupied by vineyards has augmented rapidly, thereby increasing threats to Mediterranean ecosystems. Land use change and agricultural management have important effects on soil biodiversity, because they change the physical and chemical properties of soil.

View Article and Find Full Text PDF

The success of invasive species is tightly linked to their fitness in a putatively novel environment. While quantitative components of fitness have been studied extensively in the context of invasive species, fewer studies have looked at qualitative components of fitness, such as behavioral plasticity, and their interaction with quantitative components, despite intuitive benefits over the course of an invasion. In particular, learning is a form of behavioral plasticity that makes it possible to finely tune behavior according to environmental conditions.

View Article and Find Full Text PDF

Natural ecosystems provide services to agriculture such as pest control, soil nutrients, and key microbial components. These services and others in turn provide essential elements that fuel biomass productivity. Responsible agricultural management and conservation of natural habitats can enhance these ecosystem services.

View Article and Find Full Text PDF

Susceptibility to global warming relies on how thermal tolerances respond to increasing temperatures through plasticity or evolution. Climatic adaptation can be assessed by examining the geographic variation in thermal-related traits. We studied latitudinal patterns in heat tolerance in Drosophila subobscura reared at two temperatures.

View Article and Find Full Text PDF

Chromosomal inversion clines paralleling the long-standing ones in native Palearctic populations of Drosophila subobscura evolved swiftly after this species invaded the Americas in the late 1970s and early 1980s. However, the new clines did not consistently continue to converge on the Old World baseline. Our recent survey of Chilean populations of D.

View Article and Find Full Text PDF

A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster.

View Article and Find Full Text PDF

The potential of populations to evolve in response to ongoing climate change is partly conditioned by the presence of heritable genetic variation in relevant physiological traits. Recent research suggests that Drosophila melanogaster exhibits negligible heritability, hence little evolutionary potential in heat tolerance when measured under slow heating rates that presumably mimic conditions in nature. Here, we study the effects of directional selection for increased heat tolerance using Drosophila as a model system.

View Article and Find Full Text PDF

Respiration and energy metabolism are key processes in animals, which are severely constrained by the design of physical structures, such as respiratory structures. Insects have very particular respiratory systems, based on gas diffusion across tracheae. Since the efficiency of the tracheal respiratory system is highly dependent on body shape, the pattern of morphological variation during ontogeny could have important metabolic consequences.

View Article and Find Full Text PDF

Wing dimorphism has been proposed as a strategy to face trade-offs between flight capability and fecundity. In aphids, individuals with functional wings have slower development and lower fecundity compared with wingless individuals. However, differential maintenance costs between winged and wingless aphids have not been deeply investigated.

View Article and Find Full Text PDF

'Superclones' are predominant and time-persistent genotypes, exhibiting constant fitness across different environments. However, causes of this ecological success are still unknown. Therefore, we studied the physiological mechanisms that could explain this success, evaluating the effects of wheat chemical defences on detoxification enzymes [cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST), esterases (EST)], standard metabolic rate (SMR), and fitness-related traits [adult body mass and intrinsic rate of increase (r(m))] of two 'superclones' (Sa1 and Sa2) of the grain aphid, Sitobion avenae.

View Article and Find Full Text PDF

Herbivorous insects have developed mechanisms to cope with plant barriers, including enzymatic systems to detoxify plant allelochemicals. Detoxification systems may be induced when insects are feeding on plants with increasing levels of allelochemicals. Increases in enzymatic activity have been related to energetic costs, and therefore less energy may be allocated to fitness-related traits.

View Article and Find Full Text PDF
Article Synopsis
  • Models of host-parasite coevolution suggest that genetic dynamics are influenced by the specific traits of host and parasite genotypes, with variation in resistance and infectivity being critical.
  • Research on the black bean aphid and its parasitoid revealed significant differences in both aphid susceptibility and parasitoid infectivity, particularly influenced by the presence of the bacterial symbiont Hamiltonella defensa.
  • The findings indicate that the interaction between aphids and parasitoids is complex, potentially driven by the differing abilities of parasitoids to overcome protective symbionts, raising questions about the evolutionary persistence of such symbiotic relationships.
View Article and Find Full Text PDF