Psoriasis is an inflammatory skin disorder that is characterized by keratinocyte hyperproliferation in response to immune cell infiltration and cytokine secretion in the dermis. γδ T cells expressing the Vγ4 TCR chain are among the highest contributors of IL-17A, which is a major cytokine that drives a psoriasis flare, making Vγ4 γδ T cells a suitable target to restrict psoriasis progression. In this study, we demonstrate that mitochondrial translation inhibition within Vγ4 γδ T cells effectively reduced erythema, scaling, and skin thickening in a murine model of psoriatic disease.
View Article and Find Full Text PDFThe STING signaling pathway has gained attention over the last few years due to its ability to incite antimicrobial and antitumoral immunity. Conversely, in mouse models of autoimmunity such as colitis and multiple sclerosis, where T17 cells are implicated in tissue inflammation, STING activation has been associated with the attenuation of immunogenic responses. In this line, STING was found to limit murine T17 pro-inflammatory program in vitro.
View Article and Find Full Text PDFNat Commun
July 2023
Neutrophils rely predominantly on glycolytic metabolism for their biological functions, including reactive oxygen species (ROS) production. Although pyruvate kinase M2 (PKM2) is a glycolytic enzyme known to be involved in metabolic reprogramming and gene transcription in many immune cell types, its role in neutrophils remains poorly understood. Here, we report that PKM2 regulates ROS production and microbial killing by neutrophils.
View Article and Find Full Text PDFPsoriasis is an inflammatory skin disease characterized by keratinocyte proliferation and inflammatory cell infiltration induced by IL-17. However, the molecular mechanism through which IL-17 signaling in keratinocytes triggers skin inflammation remains not fully understood. Pyruvate kinase M2 (PKM2), a glycolytic enzyme, has been shown to have non-metabolic functions.
View Article and Find Full Text PDFBackground: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear.
Objectives: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19.
Eur J Pharmacol
August 2022
T helper 17 (Th17) lymphocytes play a critical role in the pathogenesis of autoimmune diseases, mainly by producing the pro-inflammatory cytokine interleukin-17 (IL-17). Therefore, Th17 lymphocytes have been considered a strategic target for drug discovery and development. In this study, we investigated the activity and possible mechanisms of action of a 4-phenyl coumarin isolated from propolis, named cinnamoyloxy-mammeisin (CNM), in Th17 cell differentiation and the development of experimental Th17-dependent autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDFClinical data point to adverse cardiovascular events elicited by testosterone replacement therapy. Testosterone is the main hormone used in gender-affirming hormone therapy (GAHT) by transmasculine people. However, the cardiovascular impact of testosterone in experimental models of GAHT remains unknown.
View Article and Find Full Text PDFExternal and intrinsic factors regulate the transcriptional profile of T helper 17 (T17) cells, thereby affecting their pathogenic potential and revealing their context-dependent plasticity. The stimulator of interferon genes (STING), a component of the intracellular DNA-sensing pathway, triggers immune responses but remains largely unexplored in T cells. Here, we describe an intrinsic role of STING in limiting the T17 cell pathogenic program.
View Article and Find Full Text PDFMultiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease.
View Article and Find Full Text PDFTh17 cell differentiation and pathogenicity depend on metabolic reprogramming inducing shifts toward glycolysis. Here, we show that the pyruvate kinase M2 (PKM2), a glycolytic enzyme required for cancer cell proliferation and tumor progression, is a key factor mediating Th17 cell differentiation and autoimmune inflammation. We found that PKM2 is highly expressed throughout the differentiation of Th17 cells in vitro and during experimental autoimmune encephalomyelitis (EAE) development.
View Article and Find Full Text PDFNucleotide oligomerization domain (NOD)-like receptor-12 (NLRP12) has emerged as a negative regulator of inflammation. It is well described that the Th17 cell population increases in patients with early Rheumatoid Arthritis (RA), which correlates with the disease activity. Here, we investigated the role of NLRP12 in the differentiation of Th17 cells and the development of experimental arthritis, using the antigen-induced arthritis (AIA) murine model.
View Article and Find Full Text PDFThe development of neuropathic pain after peripheral nerve injury involves neuroimmune-glial interactions in the spinal cord. However, whether the development of neuropathic pain depends on the infiltration of peripheral immune cells, such as monocytes, into the spinal cord parenchyma after peripheral nerve damage remains unclear. Here, we used a combination of different techniques such as transgenic reporter mouse (Cx3cr1 and Ccr2 mice), bone marrow chimeric mice, and parabiosis to investigate this issue in spared nerve injury (SNI) model.
View Article and Find Full Text PDF