Publications by authors named "Luis Dinis"

We present a simple model for the axial dipole moment (ADM) of the geomagnetic field based on a stochastic differential equation for two coupled particles in a biquadratic potential, subjected to Gaussian random perturbations. This model generates aperiodic reversals and excursions separated by stable polarity periods. The model reproduces the temporal asymmetry of geomagnetic reversals, with slower decaying rates before the reversal and faster growing rates after it.

View Article and Find Full Text PDF

In some conditions, bacteria self-organize into biofilms, supracellular structures made of a self-produced embedding matrix, mainly composed of polysaccharides, DNA, proteins, and lipids. It is known that bacteria change their colony/matrix ratio in the presence of external stimuli such as hydrodynamic stress. However, little is still known about the molecular mechanisms driving this self-adaptation.

View Article and Find Full Text PDF

Measurement and feedback allows for an external agent to extract work from a system in contact with a single thermal bath. The maximum amount of work that can be extracted in a single measurement and the corresponding feedback loop is given by the information that is acquired via the measurement, a result that manifests the close relation between information theory and stochastic thermodynamics. In this paper, we show how to reversibly confine a Brownian particle in an optical tweezer potential and then extract the corresponding increase of the free energy as work.

View Article and Find Full Text PDF

Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines.

View Article and Find Full Text PDF

In this work, the ratchet dynamics of Brownian particles driven by an external sinusoidal (harmonic) force is investigated. The gating ratchet effect is observed when another harmonic is used to modulate the spatially symmetric potential in which the particles move. For small amplitudes of the harmonics, it is shown that the current (average velocity) of particles exhibits a sinusoidal shape as a function of a precise combination of the phases of both harmonics.

View Article and Find Full Text PDF

The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle.

View Article and Find Full Text PDF

The GTPase dynamin polymerizes into a helical coat that constricts membrane necks of endocytic pits to promote their fission. However, the dynamin mechanism is still debated because constriction is necessary but not sufficient for fission. Here, we show that fission occurs at the interface between the dynamin coat and the uncoated membrane.

View Article and Find Full Text PDF
Optimal sequence for Parrondo games.

Phys Rev E Stat Nonlin Soft Matter Phys

February 2008

An algorithm based on backward induction is devised in order to compute the optimal sequence of games to be played in Parrondo games. The algorithm can be used to find the optimal sequence for any finite number of turns or in the steady state, showing that ABABB..

View Article and Find Full Text PDF

An ensemble of Brownian particles in a feedback controlled flashing ratchet is studied. The ratchet potential is switched on and off depending on the position of the particles, with the aim of maximizing the current. We study in detail a protocol which maximizes the instant velocity of the center of mass of the ensemble at any time.

View Article and Find Full Text PDF