Publications by authors named "Luis Daniel Solis Rodriguez"

The stability of 2D all nitrogen clusters containing from 6 to 96 nitrogen atoms, terminated with CF groups, has been explored using two computational models: dispersion corrected B3LYP functional and scaled opposite spin Møller-Plesset perturbation theory (SOS-MP2). Single point domain-based local pair natural orbital coupled-cluster theory calculations (DLPNO-CCSD(T)) was used for further energy refinement. All systems were found to be minima, and their stability increases with CF/N ratio.

View Article and Find Full Text PDF

Complexes of Li, Na, and Mg with graphene, silicene, phosphorene nanoflakes (NFs), and their 2D allotropies have been studied at dispersion corrected TPSS/def-TZVP level of theory. The energy partition analysis of the complexes revealed that for most of the complexes exchange and correlation energies represent dominant contributions to the binding with strong charge transfer from the metal atom to a NF. The exceptions are Mg complexes of graphene and phosphorene NFs where binding is due to dispersion and correlation terms.

View Article and Find Full Text PDF

This contribution explores the systematic substitution of phosphorene monoflakes (Mfs) and biflakes (Bfs) with aluminum, silicon, and sulfur. These systems were investigated using density functional theory employing the TPSS exchange-correlation functional and complete active space self-consistent field (CASSCF) calculations. Al and Si substitution produces significant structural changes in both Mfs and Bfs compared to S-substituted and pristine systems.

View Article and Find Full Text PDF

The structural variability offered by 2D materials is an essential feature in materials design. Despite its significance, obtaining assemblies with suitable stability remains a challenge. In this work, we theoretically explore novel silicon, phosphorus, and germanium, analogues of haeckelites at hybrid DFT level.

View Article and Find Full Text PDF

The electronic structure of the van der Waals heterostructures (HSs) of the phosphorene (P) nanoflakes (NFs) with graphene (G) and its allotropy (H1 and H2) NFs, and their complexes with Li have been studied using dispersion-corrected TPSS functional. According to the calculations, the attractive interactions in HSs come from dispersion. It has a relatively small contribution to the binding energy in Li complexes, especially for these forming complexes with G, H1, or H2 NF side.

View Article and Find Full Text PDF

The electronic structure of isomeric graphene nanoflakes (NFs) heavily doped with boron and nitrogen atoms has been explored. Dispersion-corrected B3LYP functional has been used for the geometry optimizations. A complete active space method has been used for the energy evaluations.

View Article and Find Full Text PDF