The prediction of possible lead compounds from already-known drugs that may present DPP-4 inhibition activity imply a advantage in the drug development in terms of time and cost to find alternative medicines for the treatment of Type 2 Diabetes Mellitus (T2DM). The inhibition of dipeptidyl peptidase-4 (DPP-4) has been one of the most explored strategies to develop potential drugs against this condition. A diverse dataset of molecules with known experimental inhibitory activity against DPP-4 was constructed and used to develop predictive models using different machine-learning algorithms.
View Article and Find Full Text PDFLipoprotein(a) (Lp(a)), an independent, causal cardiovascular risk factor, is a lipoprotein particle that is formed by the interaction of a low-density lipoprotein (LDL) particle and apolipoprotein(a) (apo(a)). Apo(a) first binds to lysine residues of apolipoprotein B-100 (apoB-100) on LDL through the Kringle IV (K) 7 and 8 domains, before a disulfide bond forms between apo(a) and apoB-100 to create Lp(a) (refs. ).
View Article and Find Full Text PDFFree fatty acid receptor 1 (FFA1) stimulates insulin secretion in pancreatic β-cells. An advantage of therapies that target FFA1 is their reduced risk of hypoglycemia relative to common type 2 diabetes treatments. In this work, quantitative structure-activity relationship (QSAR) approach was used to construct models to identify possible FFA1 agonists by applying four different machine-learning algorithms.
View Article and Find Full Text PDFThe antileukemia cancer activity of organic compounds analogous to ellipticine representes a critical endpoint in the understanding of this dramatic disease. A molecular modeling simulation on a dataset of 23 compounds, all of which comply with Lipinski's rules and have a structure analogous to ellipticine, was performed using the quantitative structure activity relationship (QSAR) technique, followed by a detailed docking study on three different proteins significantly involved in this disease (PDB IDs: SYK, PI3K and BTK). As a result, a model with only four descriptors (HOMO, softness, AC1RABAMBID, and TS1KFABMID) was found to be robust enough for prediction of the antileukemia activity of the compounds studied in this work, with an R of 0.
View Article and Find Full Text PDFGlycosylation by simple sugars is a drug discovery alternative that has been explored with varying success for enhancing the potency and bioavailability of opioid peptides. Long ago we described two O-glycosides having either β-Glucose and β-Galactose of (d-Met, Pro)-enkephalinamide showing one of the highest antinociceptive activities known. Here, we report the resynthesis of these two analogs and the preparation of three novel neoglycopeptide derivatives (α-Mannose, β-Lactose and β-Cellobiose).
View Article and Find Full Text PDFTo evaluate its potential as a ligand discovery tool, we compare a newly developed 1D protein-observed fluorine NMR (PrOF NMR) screening method with the well-characterized ligand-observed H CPMG NMR screen. We selected the first bromodomain of Brd4 as a model system to benchmark PrOF NMR because of the high ligandability of Brd4 and the need for small molecule inhibitors of related epigenetic regulatory proteins. We compare the two methods' hit sensitivity, triaging ability, experiment speed, material consumption, and the potential for false positives and negatives.
View Article and Find Full Text PDFThe dual inhibitory action of the pain related peptide opiorphin (H-Gln-Arg-Phe-Ser-Arg-OH) against neutral endopeptidase (NEP) and aminopeptidase N (AP-N) was further investigated by a SAR study involving minor modifications on the polar side chains of Arg residues and glycosylation with monosaccharides at Ser. None of them exerted dual or individual inhibitory potency superior than opiorphin. However, the correlations deduced offer further proof for the key role of these residues upon the binding and bioactive conformational stabilization of opiorphin.
View Article and Find Full Text PDFDetection of molecular recognition processes requires robust, specific, and easily implementable sensing methods, especially for screening applications. Here, we propose the difluoroacetamide moiety (an acetamide bioisoster) as a novel tag for detecting by NMR analysis those glycan-protein interactions that involve N-acetylated sugars. Although difluoroacetamide has been used previously as a substituent in medicinal chemistry, here we employ it as a specific sensor to monitor interactions between GlcNAc-containing glycans and a model lectin (wheat germ agglutinin).
View Article and Find Full Text PDFHerein, we describe the use of thioglycosides as glycosidase inhibitors by employing novel modifications at the reducing end of these glycomimetics. The inhibitors display a basic galactopyranosyl unit (1→4)-bonded to a 3-deoxy-4-thiopentopyranose moiety. The molecular basis of the observed inhibition has been studied by using a combination of NMR spectroscopy and molecular modeling techniques.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) spectroscopy and molecular modeling methods have been strategically combined to elucidate the molecular recognition features of the binding of threonine O-linked Thomsen-Friedenreich (TF) antigen to chimera-type avian galectin-3 (CG-3). Saturation transfer difference (STD) NMR experiments revealed the highest intensities for the H4 protons of both the β-D-Galp and α-D-GalpNAc moieties, with 100 and 71% of relative STD, respectively. The methyl protons of the threonine residue exhibited a small STD effect, <15%, indicating that the interaction of the amino acid with the protein is rather transient.
View Article and Find Full Text PDFBifidobacteria are natural members of the human intestinal microbiota and some strains are being used as probiotics. Adaptation to bile can allow them to increase survival in gastrointestinal conditions, thus improving their viability. Bifidobacterium longum NB667 and the cholate-resistant strain B.
View Article and Find Full Text PDFToward developing new potential analgesics, this first structure-activity relationship study of opiorphin (H-Gln-Arg-Phe-Ser-Arg-OH), a human peptide inhibiting enkephalin degradation, was performed. A systematic Ala scanning proved that Phe(3) is a key residue for neprilysin and aminopeptidase N (AP-N) ectoenkephalinase inhibition. A series of Phe(3)-halogenated analogues revealed that halogen bonding based optimization strategies are not applicable to this residue.
View Article and Find Full Text PDFTo examine if the biological activity of the N/OFQ peptide, which is the native ligand of the pain-related and viable drug target NOP receptor, could be modulated by glycosylation and if such effects could be conformationally related, we have synthesized three N/OFQ glycopeptide analogues, namely: [Thr(5)-O-α-D-GalNAc-N/OFQ] (glycopeptide 1), [Ser(10)-O-α-D-GalNAc]-N/OFQ (glycopeptide 2) and [Ser(10)-O-β-D-GlcNAc]-N/OFQ] (glycopeptide 3). They were tested for biological activity in competition binding assays using the zebrafish animal model in which glycopeptide 2 exhibited a slightly improved binding affinity, whereas glycopeptide 1 showed a remarkably reduced binding affinity compared to the parent compound and glycopeptide 3. The structural analysis of these glycopeptides and the parent N/OFQ peptide by NMR and circular dichroism indicated that their aqueous solutions are mainly populated by random coil conformers.
View Article and Find Full Text PDFIn this review, we present applications of NMR spectroscopy as a potent tool for the study of molecular interactions. It is clear that a variety of NMR methods may be employed to deduce key features of ligand–receptor molecular recognition processes, looking at the process from the perspective of the receptor or the ligand. We have not provided an exhaustive review, but we have tried to focus on describing the different aspects within this research topic.
View Article and Find Full Text PDFPredominantly, rice Os3BGlu7 operates as a β-d-glucosidase (EC 3.2.1.
View Article and Find Full Text PDF