We report a combined experimental and computational approach to study the structural behavior of positively charged peptide dendrimers. Third-generation dendrimers containing combinations of positive/neutral amino acid residues in the different dendrimer generations were synthesized and their overall size evaluated using diffusion NMR. Molecular dynamics simulations were performed to obtain a comprehensive description of the molecular-level phenomena substantiating the structural differences observed.
View Article and Find Full Text PDFDendrimers are a family of ramified synthetic molecules. pH effects and electrostatic interactions are known to be crucial players to explain the conformational and functional behaviors observed in these systems. Nonetheless, to date, no computational study involving these systems has explicitly addressed the protonation equilibrium taking place at different pH values for dendrimers containing multiple ionizable sites.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2013
We present here the first comprehensive structural characterization of peptide dendrimers using molecular simulation methods. Multiple long molecular dynamics simulations are used to extensively sample the conformational preferences of five third-generation peptide dendrimers, including some known to bind aquacobalamine. We start by analyzing the compactness of the conformations thus sampled using their radius of gyration profiles.
View Article and Find Full Text PDF