Periodic Cheyne-Stokes breathing (CSB) oscillating between apnea and crescendo-decrescendo hyperpnea is the most common central apnea. Currently, there is no proven therapy for CSB, probably because the fundamental pathophysiological question of how the respiratory center generates this form of breathing instability is still unresolved. Therefore, we aimed to determine the respiratory motor pattern of CSB resulting from the interaction of inspiratory and expiratory oscillators and identify the neural mechanism responsible for breathing regularization induced by the supplemental CO administration.
View Article and Find Full Text PDFObtaining oligodendroglial cells from dispensable tissues would be of great interest for autologous or immunocompatible cell replacement therapy in demyelinating diseases, as well as for studying myelin-related pathologies or testing therapeutic approaches in culture. We evaluated the feasibility of generating oligodendrocyte precursor cells (OPCs) from adult rat adipose tissue by expressing genes encoding transcription factors involved in oligodendroglial development. Adipose-derived mesenchymal cells were lentivirally transduced with tetracycline-inducible , , , and/or transgenes.
View Article and Find Full Text PDFNeural circuits at the brainstem involved in the central generation of the motor patterns of respiration and cardiorespiratory chemoreflexes organize as cell assemblies connected by chemical and electrical synapses. However, the role played by the electrical connectivity mainly mediated by connexin36 (Cx36), which expression reaches peak value during the postnatal period, is still unknown. To address this issue, we analyzed here the respiratory phenotype of a mouse strain devoid constitutively of Cx36 at P14.
View Article and Find Full Text PDFOvercoming refractory epilepsy's resistance to the combination of antiepileptic drugs (AED), mitigating side effects, and preventing sudden unexpected death in epilepsy are critical goals for therapy of this disorder. Current therapeutic strategies are based primarily on neurocentric mechanisms, overlooking the participation of astrocytes and microglia in the pathophysiology of epilepsy. This review is focused on a set of non-selective membrane channels (permeable to ions and small molecules), including channels and ionotropic receptors of neurons, astrocytes, and microglia, such as: the hemichannels formed by Cx43 and Panx1; the purinergic P2X7 receptors; the transient receptor potential vanilloid (TRPV1 and TRPV4) channels; calcium homeostasis modulators (CALHMs); transient receptor potential canonical (TRPC) channels; transient receptor potential melastatin (TRPM) channels; voltage-dependent anion channels (VDACs) and volume-regulated anion channels (VRACs), which all have in common being activated by epileptic activity and the capacity to exacerbate seizure intensity.
View Article and Find Full Text PDFThe mutational spectrum of many genes and their contribution to the global prevalence of hereditary hearing loss is still widely unknown. In this study, we have performed the mutational screening of EYA4 gene by DHLPC and NGS in a large cohort of 531 unrelated Spanish probands and one Australian family with autosomal dominant non-syndromic hearing loss (ADNSHL). In total, 9 novel EYA4 variants have been identified, 3 in the EYA4 variable region (c.
View Article and Find Full Text PDFApproaches to control epilepsy, one of the most important idiopathic brain disorders, are of great importance for public health. We have previously shown that in sympathetic neurons the neuronal isoform of the serum and glucocorticoid-regulated kinase (SGK1.1) increases the M-current, a well-known target for seizure control.
View Article and Find Full Text PDFIntercellular communication via gap junction channels between oligodendrocytes and between astrocytes as well as between these cell types is essential to maintain the integrity of myelin in the central nervous system. Oligodendrocyte gap junction connexin-47 (Cx47) is a key element in this crosstalk and indeed, mutations in human Cx47 cause severe myelin disorders. However, the permeation properties of channels of Cx47 alone and in heterotypic combination with astrocyte Cx43 remain unclear.
View Article and Find Full Text PDFBehavioral states alternate between wakefulness (wk), rapid eye movement (rem) and non-rem (nrem) sleep at time scale of hours i.e., light and dark cycle rhythms and from several tens of minutes to seconds (i.
View Article and Find Full Text PDFFirst- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL.
View Article and Find Full Text PDFSkeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD.
View Article and Find Full Text PDFA constant challenge in experimental stroke is the use of appropriate tests to identify signs of recovery and adverse effects linked to a particular therapy. In this study, we used a long-term longitudinal approach to examine the functional brain changes associated with cortical infarction in a mouse model induced by permanent ligation of the middle cerebral artery (MCA). Sensorimotor function and somatosensory cortical activity were evaluated with fault-foot and forelimb asymmetry tests in combination with somatosensory evoked potentials.
View Article and Find Full Text PDFLife-long hematopoietic demands are met by a pool of hematopoietic stem cells (HSC) with self-renewal and multipotential differentiation ability. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment control HSC activity. Cell-to-cell communication through connexin (Cx) containing gap junctions (GJs) allows pluricellular coordination and synchronization through transfer of small molecules with messenger activity.
View Article and Find Full Text PDFPatients with liver cirrhosis show disturbances in sleep and in its circadian rhythms which are an early sign of minimal hepatic encephalopathy (MHE). The mechanisms of these disturbances are poorly understood. Rats with porta-caval shunt (PCS), a model of MHE, show sleep disturbances reproducing those of cirrhotic patients.
View Article and Find Full Text PDFThe existence of functional connexin36 (Cx36) hemichannels in β-cells was investigated in pancreatic islets of rat and wild-type (Cx36(+/+)), monoallelic (Cx36(+/-)), and biallelic (Cx36(-/-)) knockout mice. Hemichannel opening by KCl depolarization was studied by measuring ATP release and changes of intracellular ATP (ADP). Cx36(+/+) islets lost ATP after depolarization with 70 mM KCl at 5 mM glucose; ATP loss was prevented by 8 and 20 mM glucose or 50 μM mefloquine (connexin inhibitor).
View Article and Find Full Text PDFExtracellular purines elicit strong signals in the nervous system. Adenosine-5'-triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves.
View Article and Find Full Text PDFConnexins are thought to solely mediate cell-to-cell communication by forming gap junction channels composed of two membrane-spanning hemichannels positioned end-to-end. However, many if not all connexin isoforms also form functional hemichannels (i.e.
View Article and Find Full Text PDFHematopoietic stem cell (HSC) aging has become a concern in chemotherapy of older patients. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment (HM) control HSC activity during regenerative hematopoiesis. Connexin-43 (Cx43), a connexin constituent of gap junctions (GJs) is expressed in HSCs, down-regulated during differentiation, and postulated to be a self-renewal gene.
View Article and Find Full Text PDFConnexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2008
Neurotransmission through electrical synapses plays an important role in the spike synchrony among neurons and oscillation of neuronal networks. Indeed, electrical transmission has been implicated in the hypersynchronous electrical activity of epilepsy. We have investigated the influence of intracellular pH on the strength of electrical coupling mediated by connexin36 (Cx36), the principal gap junction protein in the electrical synapses of vertebrates.
View Article and Find Full Text PDFProg Biophys Mol Biol
August 2007
The importance of electrical and molecular signaling through connexin (Cx) channels is now widely recognized. The transfer of ions and other small molecules between adjacent cells is regulated by multiple stimuli, including voltage. Indeed, Cx channels typically exhibit complex voltage sensitivity.
View Article and Find Full Text PDFMutations of connexin-26 (Cx26) cause nonsyndromic hearing loss and other syndromes affecting ectoderm-derived tissues. While the exact mechanisms underlying these diseases remain elusive, Cx's are generally considered to mediate cell-to-cell communication by forming gap junction channels. We show here that unlike rat Cx26, human and sheep Cx26 form voltage-gated hemichannels when expressed in oocytes and Neuro2A cells.
View Article and Find Full Text PDFPrevious studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119-144; referred to as "L2"). Structural analysis of L2 shows two alpha-helical domains, each with a histidine residue in its sequence (H126 and H142).
View Article and Find Full Text PDFX-linked Charcot-Marie-Tooth disease is one of a set of diseases caused by mutations in gap junction proteins called connexins. We identified a connexin32 missense mutation (F235C) in a girl with unusually severe neuropathy. The localization and trafficking of the mutant protein in cell culture was normal, but electrophysiological studies showed that the mutation caused abnormal hemichannel opening, with excessive permeability of the plasma membrane and decreased cell survival.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2003
In addition to forming gap-junction channels, a subset of connexins (Cxs) also form functional hemichannels. Most hemichannels are activated by depolarization, and opening depends critically on the external Ca2+ concentration. Here we describe the mechanisms of action and the structural determinants underlying the Ca2+ regulation of Cx32 hemichannels.
View Article and Find Full Text PDF