Publications by authors named "Luis Bras Rosario"

The aim of this work was to validate the measurements of three physiological parameters, namely, body temperature, heart rate, and peripheral oxygen saturation, captured with an out-of-the-lab device using measurements taken with clinically proven devices. The out-of-the-lab specialized device was integrated into a customized mHealth application, e-CoVig, developed within the AIM Health project. To perform the analysis, single consecutive measurements of the three vital parameters obtained with e-CoVig and with the standard devices from patients in an intensive care unit were collected, preprocessed, and then analyzed through classical agreement analysis, where we used Lin's concordance coefficient to assess the agreement correlation and Bland-Altman plots with exact confidence intervals for the limits of agreement to analyze the paired data readings.

View Article and Find Full Text PDF

Cardiovascular diseases are the main cause of death in the world and cardiovascular imaging techniques are the mainstay of noninvasive diagnosis. Aortic stenosis is a lethal cardiac disease preceded by aortic valve calcification for several years. Data-driven tools developed with Deep Learning (DL) algorithms can process and categorize medical images data, providing fast diagnoses with considered reliability, to improve healthcare effectiveness.

View Article and Find Full Text PDF

Photoplethysmography (PPG) is used for heart-rate monitoring in a variety of contexts and applications due to its versatility and simplicity. These applications, namely studies involving PPG data acquisition during day-to-day activities, require reliable and continuous measurements, which are often performed at the index finger or wrist. However, some PPG sensors are susceptible to saturation, motion artifacts, and discomfort upon their use.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) account for a significant portion of global mortality, emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models, guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology.

View Article and Find Full Text PDF

In 2019, a new virus, SARS-CoV-2, responsible for the COVID-19 disease, was discovered. Asymptomatic and mildly symptomatic patients were forced to quarantine and closely monitor their symptoms and vital signs, most of the time at home. This paper describes e-CoVig, a novel mHealth application, developed as an alternative to the current monitoring paradigm, where the patients are followed up by direct phone contact.

View Article and Find Full Text PDF

Background: Omalizumab is a humanized monoclonal anti-immunoglobulin E antibody, approved for the treatment of spontaneous chronic urticaria, with high efficacy and an excellent safety profile. Although its adverse effects are rare, allergic reactions and cardiovascular events were previously described.

Case Summary: The authors describe the case of a 75-year-old woman, followed at the outpatient dermatology clinic due to spontaneous chronic urticaria, treated with omalizumab 300 mg every 4 weeks.

View Article and Find Full Text PDF

The myocardium consists of numerous cell types embedded in organized layers of ECM (extracellular matrix) and requires an intricate network of blood and lymphatic vessels and nerves to provide nutrients and electrical coupling to the cells. Although much of the focus has been on cardiomyocytes, these cells make up <40% of cells within a healthy adult heart. Therefore, repairing or regenerating cardiac tissue by merely reconstituting cardiomyocytes is a simplistic and ineffective approach.

View Article and Find Full Text PDF

microRNAs are post-transcriptional regulators of gene expression that have been shown to be central players in the establishment of cellular programs, often acting as switches that control the choice between proliferation and differentiation during development and in adult tissues. The heart develops from two small patches of cells in the mesoderm, the heart fields, which originate the different cardiac cell types, including cardiomyocytes, vascular smooth muscle and endothelial cells. These progenitors proliferate and differentiate to establish a highly connected three-dimensional structure, involving a robust succession of gene expression programs strongly influenced by microRNAs.

View Article and Find Full Text PDF

The identification of cardiac cells with stem cell properties changed the paradigm of the heart as a post mitotic organ. These cells proliferate and differentiate into cardiomyocytes, endothelial and vascular smooth muscle cells, providing for cardiac cell homeostasis and regeneration. microRNAs are master switches controlling proliferation and differentiation, in particular regulating stem cell biology and cardiac development.

View Article and Find Full Text PDF

Background: In the recent years, the use of Doppler-echocardiography has become a standard non-invasive technique in the analysis of cardiac malformations in genetically modified mice. Therefore, normal values have to be established for the most commonly used inbred strains in whose genetic background those mutations are generated. Here we provide reference values for transthoracic echocardiography measurements in juvenile (3 weeks) and adult (8 weeks) 129/Sv mice.

View Article and Find Full Text PDF

Modulation at the level of the nucleus tractus solitarii (NTS) appears to be an effective way of controlling cardiovascular reflexes. Angiotensin II acting on angiotensin AT1 receptors at the central nervous system appears to have an important role in these modulatory processes. The hypothalamic defence area (HDA) is a potential source of descending fibres containing angiotensin II that innervate the NTS.

View Article and Find Full Text PDF