Micrometre-sized water droplets were hyperquenched on a solid substrate held at selected temperatures between 150 and 77 K. These samples were characterized by differential scanning calorimetry (DSC) and X-ray diffraction. 140 K is the upper temperature limit to obtain mainly amorphous samples on deposition within 16-37 min.
View Article and Find Full Text PDFIt has been unclear whether amorphous glassy water heated to around 140-150 K remains glassy until it crystallizes or whether instead it turns into a supercooled and very viscous liquid. Yue and Angell compare the behaviour of glassy water under these conditions to that of hyperquenched inorganic glasses, and claim that water stays glassy as it heats up to its crystallization point; they also find a 'hidden' glass-to-liquid transition at about 169 K. Here we use differential scanning calorimetry (DSC) heating to show that hyperquenched water deposited at 140 K behaves as an ultraviscous liquid, the limiting structure of which depends on the cooling rate--as predicted by theoretical analysis of the liquid-to-glass transition.
View Article and Find Full Text PDFDuring vacuum condensation of metals on frozen proteins, nanoclusters are preferentially formed at specific surface sites (decoration). Understanding the nature of metal/protein interaction is of interest for structure analysis and is also important in the fields of biocompatibility and sensor development. Studies on the interaction between metal and distinct areas on the protein which enhance or impede the probability for cluster formation require information on the structural details of the protein's surface underlying the metal clusters.
View Article and Find Full Text PDF