Background: In response to the intricate language, specialized terminology outside everyday life, and the frequent presence of abbreviations and acronyms inherent in health care text data, domain adaptation techniques have emerged as crucial to transformer-based models. This refinement in the knowledge of the language models (LMs) allows for a better understanding of the medical textual data, which results in an improvement in medical downstream tasks, such as information extraction (IE). We have identified a gap in the literature regarding health care LMs.
View Article and Find Full Text PDFThe management and exchange of electronic health records (EHRs) remain critical challenges in healthcare, with fragmented systems, varied standards, and security concerns hindering seamless interoperability. These challenges compromise patient care and operational efficiency. This paper proposes a novel solution to address these issues by leveraging distributed ledger technology (DLT), including blockchain, to enhance data security, integrity, and transparency in healthcare systems.
View Article and Find Full Text PDFBackground: Patient medical information often exists in unstructured text containing abbreviations and acronyms deemed essential to conserve time and space but posing challenges for automated interpretation. Leveraging the efficacy of Transformers in natural language processing, our objective was to use the knowledge acquired by a language model and continue its pre-training to develop an European Portuguese (PT-PT) healthcare-domain language model.
Methods: After carrying out a filtering process, Albertina PT-PT 900M was selected as our base language model, and we continued its pre-training using more than 2.
Cardiovascular diseases are the main cause of death in the world and cardiovascular imaging techniques are the mainstay of noninvasive diagnosis. Aortic stenosis is a lethal cardiac disease preceded by aortic valve calcification for several years. Data-driven tools developed with Deep Learning (DL) algorithms can process and categorize medical images data, providing fast diagnoses with considered reliability, to improve healthcare effectiveness.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) account for a significant portion of global mortality, emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models, guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology.
View Article and Find Full Text PDFData sharing in the health sector represents a big problem due to privacy and security issues. Health data have tremendous value for organisations and criminals. The European Commission has classified health data as a unique resource owing to their ability to enable both retrospective and prospective research at a low cost.
View Article and Find Full Text PDFBackground: The digital age, with digital sensors, the Internet of Things (IoT), and big data tools, has opened new opportunities for improving the delivery of health care services, with remote monitoring systems playing a crucial role and improving access to patients. The versatility of these systems has been demonstrated during the current COVID-19 pandemic. Health remote monitoring systems (HRMS) present various advantages such as the reduction in patient load at hospitals and health centers.
View Article and Find Full Text PDFCurrently, an echocardiography expert is needed to identify calcium in the aortic valve, and a cardiac CT-Scan image is needed for calcium quantification. When performing a CT-scan, the patient is subject to radiation, and therefore the number of CT-scans that can be performed should be limited, restricting the patient's monitoring. Computer Vision (CV) has opened new opportunities for improved efficiency when extracting knowledge from an image.
View Article and Find Full Text PDF