Publications by authors named "Luis Antonio Ortiz-Frade"

Copper (Cu) is essential for respiration, neurotransmitter synthesis, oxidative stress response, and transcription regulation, with imbalances leading to neurological, cognitive, and muscular disorders. Here we show the role of a novel Cu-binding protein (Cu-BP) in mammalian transcriptional regulation, specifically on skeletal muscle differentiation using murine primary myoblasts. Utilizing synchrotron X-ray fluorescence-mass spectrometry, we identified murine cysteine-rich intestinal protein 2 (mCrip2) as a key Cu-BP abundant in both nuclear and cytosolic fractions.

View Article and Find Full Text PDF

Copper (Cu) is an essential trace element required for respiration, neurotransmitter synthesis, oxidative stress response, and transcriptional regulation. Imbalance in Cu homeostasis can lead to several pathological conditions, affecting neuronal, cognitive, and muscular development. Mechanistically, Cu and Cu-binding proteins (Cu-BPs) have an important but underappreciated role in transcription regulation in mammalian cells.

View Article and Find Full Text PDF

Seven new Casiopeinas® were synthesized and properly characterized. These novel compounds have a general formula [Cu(N-N)()]NO, where is deprotonated indomethacin and N-N is either bipyridine or phenanthroline with some methyl-substituted derivatives, belonging to the third generation of Casiopeinas®. Spectroscopic characterization suggests a square-based pyramid geometry and voltammetry experiments indicate that the redox potential is strongly dependent on the N-N ligand.

View Article and Find Full Text PDF

metabolizes pyocyanin, a redox molecule related to diverse biological activities. Culture conditions for the production of pyocyanin in a defined medium were optimized using a statistical design and response surface methodology. The obtained conditions were replicated using as substrate an alkaline residual liquid of cooked maize and its by-products.

View Article and Find Full Text PDF