We present a new approach to classifying the sleep stage that incorporates a computationally inexpensive method based on permutations for channel selection and takes advantage of deep learning power, specifically the gated recurrent unit (GRU) model, along with other deep learning methods. By systematically permuting the electroencephalographic (EEG) channels, different combinations of EEG channels are evaluated to identify the most informative subset for the classification of the 5-class sleep stage. For analysis, we used an EEG dataset that was collected at the International Institute for Integrative Sleep Medicine (WPI-IIIS) at the University of Tsukuba in Japan.
View Article and Find Full Text PDFHigh-density Electroencephalography (HD-EEG) has proven to be the EEG montage that estimates the neural activity inside the brain with highest accuracy. Multiple studies have reported the effect of electrode number on source localization for specific sources and specific electrode configurations. The electrodes for these configurations are often manually selected to uniformly cover the entire head, going from 32 to 128 electrodes, but electrode configurations are not often selected according to their contribution to estimation accuracy.
View Article and Find Full Text PDFIn this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN).
View Article and Find Full Text PDFWe present a new approach for a biometric system based on electroencephalographic (EEG) signals of resting-state, that can identify a subject and reject intruders with a minimal subset of EEG channels. To select features, we first use the discrete wavelet transform (DWT) or empirical mode decomposition (EMD) to decompose the EEG signals into a set of sub-bands, for which we compute the instantaneous and Teager energy and the Higuchi and Petrosian fractal dimensions for each sub-band. The obtained features are used as input for the local outlier factor (LOF) algorithm to create a model for each subject, with the aim of learning from it and rejecting instances not related to the subject in the model.
View Article and Find Full Text PDFWe present a multi-objective optimization method for electroencephalographic (EEG) channel selection based on the non-dominated sorting genetic algorithm (NSGA) for epileptic-seizure classification. We tested the method on EEG data of 24 patients from the CHB-MIT public dataset. The procedure starts by decomposing the EEG data from each channel into different frequency bands using the empirical mode decomposition (EMD) or the discrete wavelet transform (DWT), and then for each sub-band four features are extracted; two energy values and two fractal dimension values.
View Article and Find Full Text PDFWe are here to present a new method for the classification of epileptic seizures from electroencephalogram (EEG) signals. It consists of applying empirical mode decomposition (EMD) to extract the most relevant intrinsic mode functions (IMFs) and subsequent computation of the Teager and instantaneous energy, Higuchi and Petrosian fractal dimension, and detrended fluctuation analysis (DFA) for each IMF. We validated the method using a public dataset of 24 subjects with EEG signals from 22 channels and showed that it is possible to classify the epileptic seizures, even with segments of six seconds and a smaller number of channels ( .
View Article and Find Full Text PDFWe present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extracted using empirical mode decomposition (EMD) for each channel, and the feature vectors were used as input for one-class/multi-class support vector machines (SVMs). We tested the method on data from the event-related potentials (ERPs) of 26 subjects and 56 channels.
View Article and Find Full Text PDF