Both genetic drift and divergent selection are predicted to be drivers of population differentiation across patchy habitats, but the extent to which these forces act on natural populations to shape traits is strongly affected by species' ecological features. In this study, we infer the genomic structure of Pitcairnia lanuginosa, a widespread herbaceous perennial plant with a patchy distribution. We sampled populations in the Brazilian Cerrado and the Central Andean Yungas and discovered and genotyped SNP markers using double-digest restriction-site associated DNA sequencing.
View Article and Find Full Text PDFBackground And Aims: Isolated populations constitute an ideal laboratory to study the consequences of intraspecific divergence, because intrinsic incompatibilities are more likely to accumulate under reduced gene flow. Here, we use a widespread bromeliad with a patchy distribution, Pitcairnia lanuginosa, as a model to infer processes driving Neotropical diversification and, thus, to improve our understanding of the origin and evolutionary dynamics of biodiversity in this highly speciose region.
Methods: We assessed the timing of lineage divergence, genetic structural patterns and historical demography of P.