Publications by authors named "Luis Alberto Loureiro Dos Santos"

This study aimed to investigate biocompatibility, integration, and tissue host response of the Poly (Lactic-co-Glycolic acid) (PLGA)/Poly (isoprene) (PI) epoxidized (PLGA/PIepox) innovative scaffold combined with adipose derived mesenchymal stem cells (ADSC). We implanted the scaffold subcutaneously on the back of 18 female rats and monitored them for up to 14 days. When compared to controls, PLGA/PIepox + ADSC demonstrated an earlier vascularization, a tendency of inflammation reduction, an adequate tissue integration, higher cell proliferation, and a tendency of expression of collagen decreasing.

View Article and Find Full Text PDF

Metal injection molding (MIM) has become an important manufacturing technology for biodegradable medical devices. As a biodegradable metal, pure iron is a promising biomaterial due to its mechanical properties and biocompatibility. In light of this, we performed the first study that manufactured and evaluated the in vitro and in vivo biocompatibility of samples of iron porous implants produced by MIM with a new eco-friendly feedstock from natural rubber (Hevea brasiliensis), a promisor binder that provides elastic property in the green parts.

View Article and Find Full Text PDF

The use of drug delivery systems is a good technique to leave the right quantity of medicine in the patient's body in a suitable dose, because the drug application is delivered directly to the affected region. The current techniques such as HPLC and UV-Vis for the drug delivery calculation has some disadvantages, as the accuracy and the loss of the sample after characterization. With the aim of reducing the amount of material used during the characterization and have a non-destructive test with instantaneous results, the present paper shows the possibility of using electrochemical impedance spectroscopy (EIS) to have a drug delivery measurement during the release phenomena for a calcium phosphate cement (CFC) delivery system with gentamicin sulfate (GS) and lidocaine hydrochloride (LH), at a ratio of 1% and 2%, respectively.

View Article and Find Full Text PDF

Some biomaterial scaffolds can positively interfere with tissue regeneration and are being developed to successfully repair the tissue function. The possibility of using epithelial cells combined with biomaterials appears to be a new option as therapeutic application. This combination emerges as a possibility for patients with Mayer-Rokitansky-Kuster-Hauser syndrome which requires vaginal repair and can be performed with tissue-engineered solution containing cells and biomaterials.

View Article and Find Full Text PDF

In this study, we report the production and characterization of tracheal stents composed of polydimethylsiloxane/nanostructured calcium phosphate composites obtained by reactive synthesis. Tracheal stents were produced by transfer molding, and in vivo tests were carried out. PDMS was combined with H PO and Ca(OH) via an in situ reaction to obtain nanoparticles of calcium phosphate dispersed within the polymeric matrix.

View Article and Find Full Text PDF

A trachea is a tubular structure composed of smooth muscle that is reinforced with cartilage rings. Some diseases can cause sagging in smooth muscle and cartilaginous tissue. The end result is reduction (narrowing) of the trachea diameter.

View Article and Find Full Text PDF

The development of 3D printing hardware, software and materials has enabled the production of bone substitute scaffolds for tissue engineering. Calcium phosphates cements, such as those based on α-tricalcium phosphate (α-TCP), have recognized properties of osteoinductivity, osteoconductivity and resorbability and can be used to 3D print scaffolds to support and induce tissue formation and be replaced by natural bone. At present, however, the mechanical properties found for 3D printed bone scaffolds are only satisfactory for non-load bearing applications.

View Article and Find Full Text PDF

The 3D printing process is highlighted nowadays as a possibility to generate individual parts with complex geometries. Moreover, the development of 3D printing hardware, software and parameters permits the manufacture of parts that can be not only used as prototypes, but are also made from materials that are suitable for implantation. In this way, this study investigates the process involved in the production of patient-specific craniofacial implants using calcium phosphate cement, and its dimensional accuracy.

View Article and Find Full Text PDF