Publications by authors named "Luis Alberto Cantera-Cantera"

In this work, we present the green synthesis of complex - derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine and incorporated into a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) matrix to manufacture composite semiconductor films. The semiconductor films were characterized through atomic force microscopy, examining their topography, Knoop hardness (around 17 HK), and tensile strength, which varied from 5 × 10 to 7 × 10 Pa.

View Article and Find Full Text PDF

This work presents the evaluation of the electrical behavior of a flexible photoconductor with a planar heterojunction architecture made up of organic semiconductor films deposited by high vacuum evaporation. The heterojunction was characterized in its morphology and mechanical properties by scanning electron microscopy and atomic force microscopy. The electrical characterization was carried out through the approximations of ohmic and SCLC (Space-Charge Limited Current) behaviors using experimental J-V (current density-voltage) curves at different voltages and under different light conditions.

View Article and Find Full Text PDF

In this work we studied the semiconductor behavior of titanyl phthalocyanine (TiOPc) and vanadyl phthalocyanine (VOPc), doped with anthraflavic acid and deposited on Tetrapak/graphite as flexible electrodes. The molecular structure was approached using the density functional theory and astonishingly, it was found that the structure and electronic behavior can change depending on the metal in the phthalocyanine. Experimentally, the Root Mean Square was found to be 124 and 151 nm for the VOPc-Anthraflavine and TiOPc-Anthraflavine films, respectively, and the maximum stress was 8.

View Article and Find Full Text PDF

In the present work, we have investigated an organic semiconductor based on tris(8-hydroxyquinoline) aluminum (AlQ) doped with tetracyanoquinodimethane (TCNQ), which can be used as an organic photoconductor. DFT calculations were carried out to optimize the structure of semiconductor species and to obtain related constants in order to compare experimental and theoretical results. Subsequently, AlQ-TCNQ films with polypyrrole (Ppy) matrix were fabricated, and they were morphologically and mechanically characterized by Scanning Electron Microscopy, X-ray diffraction and Atomic Force Microscopy techniques.

View Article and Find Full Text PDF