Publications by authors named "Luis Adrian Padilla Salas"

Nature serves as an important source of inspiration for the innovation and development of micro- and nanostructures for advanced functional surfaces and substrates. One example used in nature is a spikey surface ranging from micrometer-sized spikes on pollen grains down to the nanometer-scale protein spikes found on viruses. This study explored the realization of such highly textured surfaces via the nanoengineering of self-assembled poly(γ-benzyl-l-glutamate) "nanospikes", exploiting solvent-induced chain organization, controlled surface chemical functionality, and enhanced stability in the form of polymer brushes.

View Article and Find Full Text PDF

Polymer brushes with controllable grafting density are grown on an inimer coating bearing Reversible Addition-Fragmentation Chain Transfer polymerization (RAFT) chain transfer agents (CTAs). The inimer coating is cross-linked on the substrate to provide an initiator layer that is stable during exposure to organic solvents at high temperatures. Surface-initiated RAFT is conducted to grow poly(2-vinylpyridine) (P2VP) brushes on the coating at grafting densities approaching the theoretical limits.

View Article and Find Full Text PDF

Bottlebrush polymers consist of a linear backbone with densely grafted side chains. They are known to have a range of properties of interest, such as enhanced mechanical strength and rapid self-assembly into large domains, and have attracted attention as promising candidates for applications in photonics, lithography, energy storage, organic optoelectronics, and drug delivery. Here, we present a coarse-grained model of bottlebrush polymers that is able to reproduce their experimentally observed persistence lengths and chain conformations in the melt.

View Article and Find Full Text PDF