Publications by authors named "Luis A. Oro"

Iridium(I) N-heterocyclic carbene complexes of formula Ir(κ O,O'-BHetA)(IPr)(η -coe) [BHetA=bis-heteroatomic acidato, acetylacetonate or acetate; IPr=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-carbene; coe=cyclooctene] have been prepared by treating Ir(κ O,O'-BHetA)(η -coe) complexes with IPr. These complexes react with 2-vinylpyridine to afford the hydrido-iridium(III)-alkenyl cyclometalated derivatives IrH(κ O,O'-BHetA)(κ N,C-C H N)(IPr) through the iridium(I) intermediate Ir(κ O,O'-BHetA)(IPr)(η -C H N). The cyclometalated IrH(κ O,O'-acac)(κ N,C-C H N)(IPr) complex efficiently catalyzes the hydroalkenylation of aromatic and aliphatic terminal alkynes and enynes with 2-vinylpyridine to afford 2-(4R-butadienyl)pyridines with Z,E configuration as the major reaction products (yield up to 89 %).

View Article and Find Full Text PDF

The Ir-Si bond distances reported for Ir-(fac-κ3-NSiNOPy) and Ir-(fac-κ3-NSiN4MeOPy) species (NSiNOPy = bis(pyridine-2-yloxy)methylsilyl and NSiN4MeOPy = bis(4-methyl-pyridine-2-yloxy)methylsily) are in the range of 2.220-2.235 Å.

View Article and Find Full Text PDF

A series of Rh(κ -BHetA)(η -coe)(IPr) complexes bearing 1,3-bis-hetereoatomic acidato ligands (BHetA) including carboxylato (O,O), thioacetato (O,S), amidato (O,N), thioamidato (N,S), and amidinato (N,N), have been prepared by reaction of the dinuclear precursor [Rh(μ-Cl)(IPr)(η -coe)] with the corresponding anionic BHetA species. The Rh -NHC-BHetA compounds catalyze the dimerization of aryl alkynes, showing excellent selectivity for the head-to-tail enynes. Among them, the acetanilidato-based catalyst has shown an outstanding catalytic performance reaching unprecedented TOF levels of 2500 h with complete selectivity for the gem-isomer.

View Article and Find Full Text PDF

Reaction of [Ir(μ-Cl)(COE)2]2 (COE = cis-cyclooctene) with tris(3,5-dimethylpyrazol-1-yl)methane (MeTpm) affords [IrCl(κ1-N-MeTpm)(COD)] (1) (COD = 1,5-cyclooctadiene). The formation of 1 implies the transfer dehydrogenation of a COE ligand to give COD and COA (cyclooctane). A mechanistic proposal based on DFT calculations that explains this iridium promoted process has been disclosed.

View Article and Find Full Text PDF

The reaction of (4-methyl-pyridin-2-iloxy)ditertbutylsilane (NSitBu-H, 1) with [IrCl(coe)2]2 affords the iridium(iii) complex [Ir(H)(Cl)(κ2-NSitBu)(coe)] (2), which has been fully characterized including X-ray diffraction studies. The reaction of 2 with AgCF3SO3 leads to the formation of species [Ir(H)(CF3SO3)(κ2-NSitBu)(coe)] (3). The iridium complexes 2 and 3 are effective catalysts for the reduction of formamides with HSiMe2Ph.

View Article and Find Full Text PDF

This review summarises the most recent advances in Ir-NHC catalysis while revisiting all the classical reactions in which this type of catalyst has proved to be active. The influence of the ligand system and, in particular, the impact of the NHC ligand on the activity and selectivity of the reaction have been analysed, accompanied by an examination of the great variety of catalytic cycles hitherto reported. The reaction mechanisms so far proposed are described and commented on for each individual process.

View Article and Find Full Text PDF

A well-defined NHC-Ir(iii) catalyst, [Ir(H)(IPr)(py)][BF] (IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene), that provides access to a wide range of aryl- and heteroaryl-silanes by intermolecular dehydrogenative C-H bond silylation has been prepared and fully characterized. The directed and non-directed functionalisation of C-H bonds has been accomplished successfully using an arene as the limiting reagent and a variety of hydrosilanes in excess, including EtSiH, PhMeSiH, PhMeSiH, PhSiH and (EtO)SiH. Examples that show unexpected selectivity patterns that stem from the presence of aromatic substituents in hydrosilanes are also presented.

View Article and Find Full Text PDF

Herein we report on the different chemical reactivity displayed by two mononuclear terminal amido compounds depending on the nature of the coordinated diene. Hence, treatment of amido-bridged iridium complexes [{Ir(μ-NH)(tfbb)}] (1; tfbb = tetrafluorobenzobarrelene) with dppp (dppp = bis(diphenylphosphane)propane) leads to the rupture of the amido bridges forming the mononuclear terminal amido compound [Ir(NH)(dppp)(tfbb)] (3) in the first stage. On changing the reaction conditions, the formation of a C-NH bond between the amido moiety and the coordinated diene is observed and a new dinuclear complex [{Ir(1,2-η-4-κ-CHFN)(dppp)}(μ-dppp)] (4) has been isolated.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the hydrosilylation of carbon monoxide (CO) using various silanes and an iridium(III) complex as a catalyst, highlighting its comparative effectiveness.
  • The effectiveness of the reaction varies with the type of silane used, with the silane HSiMe(OSiMe) showing the highest activity, while maintaining selectivity for producing silylformates.
  • High temperatures (above 328 K) reduce catalytic activity due to competitive pathways, with different mechanisms observed for the iridium(III) catalysts based on their ligand types, indicating an inner-sphere mechanism for one and an outer-sphere mechanism for another.
View Article and Find Full Text PDF

The paddlewheel-shaped complex [Sb(μ-pyS) Rh] (1) (pyS = 2-S-C H N ) was synthesized from [Rh(pyS)(cod)] (cod=1,5-cyclooctadiene) and Sb(pyS) . Upon oxidation with ONMe , the complex [(μ-O)Sb(μ-pyS) Rh(κ -pyS)] (2) is formed. Both 1 and 2 form dimers and feature short Rh-Sb bonds and bridging pyS ligands.

View Article and Find Full Text PDF

The synthesis of a wide variety of carbamates from amines, alcohols and carbon monoxide has been achieved by means of a Rh-catalysed oxidative carbonylation reaction that uses Oxone as a stoichiometric oxidant. In-depth studies on the reaction mechanism shed light on the intimate role of Oxone in the catalytic cycle.

View Article and Find Full Text PDF

The positive effect of the addition of water to acetone hydrogenation by [RhH(PR)S] catalysts has been studied by DFT calculations. The studied energetic profiles reveal that the more favourable mechanistic path involves a hydride migration to the ketone followed by a reductive elimination that is assisted by two water molecules.

View Article and Find Full Text PDF

A variety of binuclear rhodium(i) complexes featuring two bridging dimethylphosphinate ligands ((CH)PO) have been prepared and tested in the alkoxycarbonylation of aromatic C-H bonds. The complex [Rh(μ-κO,O'-(CH)PO)(cod)] has been prepared by a reaction of [Rh(μ-MeO)(cod)] with 2 equivalents of dimethylphosphinic acid. Binuclear complexes [Rh(μ-κO,O'-(CH)PO)(CO)L] (L = PPh, P(OMe)Ph and P(OPh)) were obtained by carbonylation of the related mononuclear complexes [Rh(κO-(CH)PO)(cod)(L)], which were prepared in situ by the reaction of [Rh(μ-κO,O'-(CH)PO)(cod)] with 2 equivalents of L.

View Article and Find Full Text PDF

A series of rhodium-NSiN complexes (NSiN=bis (pyridine-2-yloxy)methylsilyl fac-coordinated) is reported, including the solid-state structures of [Rh(H)(Cl)(NSiN)(PCy3 )] (Cy=cyclohexane) and [Rh(H)(CF3 SO3 )(NSiN)(coe)] (coe=cis-cyclooctene). The [Rh(H)(CF3 SO3 )(NSiN)(coe)]-catalyzed reaction of acetophenone with silanes performed in an open system was studied. Interestingly, in most of the cases the formation of the corresponding silyl enol ether as major reaction product was observed.

View Article and Find Full Text PDF

The Ir(i) complexes [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 and [IrCl(cod)(κC-NHO(OMe))] (cod = 1,5-cyclooctadiene, NHO(PPh2) = 1,3-bis(2-(diphenylphosphanyl)ethyl)-2-methyleneimidazoline) and NHO(OMe) = 1,3-bis(2-(methoxyethyl)-2-methyleneimidazoline), both featuring an N-heterocyclic olefin ligand (NHO), have been tested in the transfer hydrogenation reaction; this representing the first example of the use of NHOs as ancillary ligands in catalysis. The pre-catalyst [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 has shown excellent activities in the transfer hydrogenation of aldehydes, ketones and imines using (i)PrOH as a hydrogen source, while [IrCl(cod)(κC-NHO(OMe))] decomposes throughout the reaction to give low yields of the hydrogenated product. Addition of one or two equivalents of a phosphine ligand to the latter avoids catalyst decomposition and significantly improves the reaction yields.

View Article and Find Full Text PDF
Article Synopsis
  • The 6th EuCheMS Chemistry Congress is scheduled for September 2016 in Seville, showcasing the importance of chemistry in Europe.
  • EuCheMS unites over 160,000 chemists from more than 40 member societies across Europe.
  • ChemPubSoc Europe, comprising 16 chemical societies from 15 countries, plays a vital role in fostering a cohesive European identity in the field of chemistry.
View Article and Find Full Text PDF

It has been demonstrated that the reaction of [2,2,2-(H)(PPh3)2-closo-2,1-RhSB8H8] () with PPh3 affords the boron substituted rhodathiaborane-PPh3 adduct, [6,6-(PPh3)2-9-(PPh3)-arachno-6,5-RhSB8H9] (). Building upon this reaction, we report herein that the 10-vertex hydridorhodathiaborane reacts with the Lewis bases, PCy3, py, 2-Mepy, 2-Etpy, 3-Mepy and 4-Mepy to form the rhodathiaborane-ligand adducts, [6,6-(PPh3)2-9-(L)-arachno-6,5-RhSB8H9], where L = PCy3 (), 2-Mepy (), 2-Etpy (), py (), 3-Mepy () or 4-Mepy (), and [8,9-μ-(H)-9-(PPh3)2-8-(L)-arachno-9,6-RhSB8H8], where L = py (), 3-Mepy () or 4-Mepy (). The selectivity of the reactions depended on the nature of the entering Lewis bases, affording the 6,5-isomers, , , and as single products for PPh3, PCy3, 2-Mepy and 2-Etpy; and mixtures of the 6,5-/9,6-regioisomers, /, / and / for py, 3-Mepy and 4-Mepy, respectively.

View Article and Find Full Text PDF

The regioselective double hydrophosphination of alkynes mediated by rhodium catalysts is presented. The distinctive stereoelectronic properties of the NHC ligand prevent the catalyst deactivation by diphosphine coordination thereby allowing for the closing of a productive catalytic cycle.

View Article and Find Full Text PDF

Pentacoordinated iridium(i) complexes of formula IrCl(SiNP)(tfbb) (1) and IrCl(HNP)2(tfbb) (2) (SiNP = SiMe2{N(4-C6H4CH3)PPh2}2; HNP = NH(4-C6H4CH3)PPh2) have been prepared and fully characterised. Both feature a distorted square pyramidal coordination polyhedron at the metal centre in the solid state and are fluxional in solution. Their reaction with trimethyl phosphite yields the derivatives [Ir(SiNP){P(OMe)3}(tfbb)]Cl ([3]Cl) and Ir{PO(OMe)2}(HNP)2(tfbb) (4).

View Article and Find Full Text PDF

The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for CC bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)-cyclooctadiene complexes having a NHC ligand with a O- or N-functionalised wingtip efficiently catalysed the oxidation and β-alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3 )(cod)(MeIm(2- methoxybenzyl))][BF4 ] (cod=1,5-cyclooctadiene, MeIm=1-methylimidazolyl) having a rigid O-functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0 ) of 1283 h(-1) , and also in the β-alkylation of 2-propanol with butan-1-ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan-2-ol.

View Article and Find Full Text PDF

[{Rh(μ-Cl)(H)2 (IPr)}2 ] (IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazole-2-ylidene) was found to be an efficient catalyst for the synthesis of novel propargylamines by a one-pot three-component reaction between primary arylamines, aliphatic aldehydes, and triisopropylsilylacetylene. This methodology offers an efficient synthetic pathway for the preparation of secondary propargylamines derived from aliphatic aldehydes. The reactivity of [{Rh(μ-Cl)(H)2 (IPr)}2 ] with amines and aldehydes was studied, leading to the identification of complexes [RhCl(CO)IPr(MesNH2 )] (MesNH2 = 2,4,6-trimethylaniline) and [RhCl(CO)2 IPr].

View Article and Find Full Text PDF

The reaction of [Ir(SiNP)(cod)][PF6] ([1][PF6]) and of IrCl(SiNP)(cod) (5) (SiNP = SiMe2{N(4-C6H4CH3)PPh2}2) with trimethyl phosphite affords the iridium(iii) derivatives of the formula [IrHClx(SiNP-H){P(OMe)3}2-x]((1-x)+) (x = 0, 3(+); x = 1, 6) containing the κ(3)C,P,P'-coordinated SiNP-H ligand (SiNP-H = Si(CH2)(CH3){N(4-C6H4CH3)PPh2}2). The thermally unstable pentacoordinated cation [Ir(SiNP){P(OMe)3}(cod)](+) (2(+)) has been detected as an intermediate of the reaction and has been fully characterised in solution. Also, the mechanism of the C-H oxidative addition has been elucidated by DFT calculations showing that the square planar iridium(i) complexes of the formula [IrClx(SiNP){P(OMe)3}2-x]((1-x)+) (x = 0, 4(+); x = 1, 7) should be firstly obtained from 2(+) and finally should undergo the C-H oxidative addition to iridium(i) via a concerted intramolecular mechanism.

View Article and Find Full Text PDF

A new PCP-type ligand based on an N-heterocyclic olefin (NHO) scaffold has been prepared. The flexibility of this ligand, which is able to adopt facial coordination modes in Ir(I) or meridional in Ir(III) complexes, can be attributed to the dual nature (ylide-olefin) of the NHO scaffold. This results in a rare case of olefin "slippage" that is supported by X-ray crystallography and DFT calculations.

View Article and Find Full Text PDF

A new Ir(ii) complex [{Ir(μ-κCNHC,η(6)Dipp-IDipp)(H)}2][BF4]2 has been prepared and fully characterised. This complex acts as a catalyst for the hydroalkynylation of imines according to an unprecedented diiridium-mediated mechanism.

View Article and Find Full Text PDF

Metallaheteroboranes are versatile compounds that can be conveniently modified and eventually tailored by ligand modification at either the metal centre or the boron vertices. Recently, we have discovered that protonation of some rhodathiaboranes affords cationic clusters with interesting reaction chemistry. In order to tune the reactivity of some of these polyhedral boron-based compounds, we have prepared air-stable orange [1,1-(η(2)-dppe)-3-(NC5H5)-closo-1,2-RhSB9H8] (2) by the treatment of the known hydridorhodathiaborane [8,8,8-(H)(PPh3)2-9-(NC5H5)-nido-8,7-RhSB9H9] (1) with dppe.

View Article and Find Full Text PDF