We propose a non-parametric estimator for bivariate left-truncated and right-censored observations that combines the expectation-maximization algorithm and the reinforced urn process. The resulting expectation-reinforcement algorithm allows for the inclusion of experts' knowledge in the form of a prior distribution, thus belonging to the class of Bayesian models. This can be relevant in applications where the data is incomplete, due to biases in the sampling process, as in the case of left-truncation and right-censoring.
View Article and Find Full Text PDF