Temperature is the main environmental determinant of seed oil fatty acid Q9 composition. There are no models describing common responses of main seed oil fatty acids to temperature in plants. The aim of thus work was to investigate common responses of seed oil fatty acids to minimum temperature during grain filling across species and genotypes.
View Article and Find Full Text PDFConventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes.
View Article and Find Full Text PDFGrain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains.
View Article and Find Full Text PDFThe selection and validation of reference genes constitute a key point for gene expression analysis based on qPCR, requiring efficient normalization approaches. In this work, the expression profiles of eight genes were evaluated to identify novel reference genes for transcriptional studies associated to the senescence process in sunflower. Three alternative strategies were applied for the evaluation of gene expression stability in leaves of different ages and exposed to different treatments affecting the senescence process: algorithms implemented in geNorm, BestKeeper software, and the fitting of a statistical linear mixed model (LMModel).
View Article and Find Full Text PDFPlants under water deficit reduce leaf growth, thereby reducing transpiration rate at the expense of reduced photosynthesis. The objective of this work was to analyse the response of leaf growth to water deficit in several sunflower genotypes in order to identify and quantitatively describe sources of genetic variability for this trait that could be used to develop crop varieties adapted to specific scenarios. The genetic variability of the response of leaf growth to water deficit was assessed among 18 sunflower (Helianthus annuus L.
View Article and Find Full Text PDFBackground And Aims: Leaves expand during a given period of time until they reach their final size and form, which is called determinate growth. Duration of leaf expansion is stable when expressed in thermal-time and in the absence of stress, and consequently it is often proposed that it is controlled by a robust programme at the plant scale. The usual hypothesis is that growth cessation occurs when cell expansion becomes limited by an irreversible tightening of cell wall, and that leaf size is fixed once cell expansion ceases.
View Article and Find Full Text PDFCommon features in the time-course of expansion of leaves which considerably differed in final area, due to phytomer position, growing conditions and genotype, were identified. Leaf development consisted of two phases of exponential growth, followed by a third phase of continuous decrease of the relative expansion rate. The rate and the duration of the first exponential phase were common to all phytomers, growing conditions and genotypes.
View Article and Find Full Text PDF