Polymers (Basel)
December 2024
This work connects the calorimetric responses of different rubber-resin blends with varying resin contents with their alpha relaxation dynamics. We used differential scanning calorimetry and broadband dielectric spectroscopy to characterize the calorimetric and dielectric responses of styrene-butadiene, polybutadiene, and polyisoprene with different resin contents. To model the results, we used the Gordon-Taylor equation combined with an extension of the Adam-Gibbs approach.
View Article and Find Full Text PDFThe analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time-consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials.
View Article and Find Full Text PDFWe present a detailed study on the ionic transport properties of polyethylene oxide (PEO) thin films prepared under different conditions. Using a state-of-the-art Atomic Force Microscopy (AFM) methodology, we simultaneously acquired the nanostructured topography of these semicrystalline polymer films as well as the corresponding dielectric function; in the latter case by probing the frequency-dependent tip-sample electrical interactions. By means of this AFM protocol, we studied the ionic conductivity in the PEO amorphous phase and its dependence on film preparation conditions.
View Article and Find Full Text PDFSurface-confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbon-based nanostructures with predefined chemical properties. However, for devices generally requiring low-conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4″-dibromoterphenyl precursors.
View Article and Find Full Text PDFA vicinal rutile TiO2(110) crystal with a smooth variation of atomic steps parallel to the [1-10] direction was analyzed locally with STM and ARPES. The step edge morphology changes across the samples, from [1-11] zigzag faceting to straight [1-10] steps. A step-bunching phase is attributed to an optimal (110) terrace width, where all bridge-bonded O atom vacancies (Obr vacs) vanish.
View Article and Find Full Text PDFIn this work we study the influence of adding nano-silica (SiO2, Nyasil™) and aminopropyl (-(CH2)3-NH2,) functionalized silica nanoparticles (Stoga) during the synthesis of calcium-silicate-hydrate (C-S-H gel). Characterization by solid state (29)Si NMR and ATR-FTIR spectroscopy showed that the addition of both particle types increases the average length of the silicate chains in C-S-H gel being this effect slightly more important in the case of Stoga particles. In addition, (13)C NMR and XPS confirmed that the aminopropyl chain remains in the final product cleaved to silicon atoms at the end of the silicate chain of C-S-H gel whereas XRD measurements showed that this result in an increment in the basal distance compared with ordinary CSH.
View Article and Find Full Text PDFIn the last years, a new AFM based dielectric spectroscopy approach has been developed for measuring the dielectric relaxation of materials at the nanoscale, the so called nanoDielectric Spectroscopy (nDS). In spite of the effort done so far, some experimental aspects of this technique remain still unclear. In particular, one of these aspects is the possibility of extending the experimental frequency range, to date limited at high frequencies by the resonance frequency of the AFM cantilever as a main factor.
View Article and Find Full Text PDFBy means of electric force microscopy, composition depth profiles were measured with nanometric resolution for a series of fluorinated networks. By mapping the dielectric permittivity along a line going from the surface to the bulk, we were able to experimentally access to the fluorine concentration profile. Obtained data show composition gradient lengths ranging from 30 nm to 80 nm in the near surface area for samples containing from 0.
View Article and Find Full Text PDF