Publications by authors named "Luis A Mendez-Cuesta"

Background: In a previous report, we have characterized the antiperoxidative properties of alpha-mangostin in different toxic models tested in nerve tissue preparations.

Objectives: Here, the modulatory effects of this xanthone on the glutathione system (reduced glutathione (GSH) levels, glutathione peroxidase (GPx), and glutathione S-transferase (GST) activities) were tested in synaptosomal P2 fractions isolated from rat brains in order to provide further information on key mechanisms exerted by this antioxidant in the nervous system.

Methods: Synaptosomes were exposed to increasing concentrations of the xanthone, and also challenged to the toxic actions of a free radical generator, ferrous sulfate (FeSO(4)).

View Article and Find Full Text PDF

In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples.

View Article and Find Full Text PDF

This work focuses on the effect of acute stress on different markers of oxidative stress and mitochondrial dysfunction in the rat striatum. In addition, the effect of a single dose of l-carnitine (l-CAR, 300 mg/kg, i.p.

View Article and Find Full Text PDF

Amyloid beta (Abeta) peptide exerts different toxic effects at a cellular level, including over-activation of N-methyl-D-aspartate receptor (NMDAr) and excitotoxicity, synaptic dysfunction and neuronal death. Kynurenic acid (KYNA) is an endogenous antagonist of NMDAr and alpha7 nicotinic receptors. Systemic administrations of both the immediate metabolic precursor of KYNA, L-kynurenine (L-KYN), and a proved inhibitor of KYNA's brain transport, probenecid (PROB), have shown to produce neuroprotective effects in a considerable number of experimental toxic conditions; however, this strategy has not been tested in the toxic model Abeta peptide so far.

View Article and Find Full Text PDF