The hypothalamic-pituitary-adrenal (HPA) axis in mammals and the hypothalamic-pituitary-interrenal (HPI) axis in fish are open systems that adapt to the environment during development. Little is known about how this adaptation begins and regulates early stress responses. We used larval zebrafish to examine the impact of prolonged forced swimming at 5 days post-fertilization (dpf), termed early-life challenge (ELC), on cortisol responses, neuropeptide expression in the nucleus preopticus (NPO), and gene transcript levels.
View Article and Find Full Text PDFZebrafish larvae show a rapid increase in cortisol in response to acute stressors, followed by a decline. While these responses are documented, both the duration of the refractory period to repeated stressors and the role of glucocorticoid receptors (GR) in specific phases of the glucocorticoid negative feedback are still being clarified. We explored these questions using water vortices as stressors, combined with GR blockage and measurements of whole-body cortisol in zebrafish larvae subjected to single and repeated stress protocols.
View Article and Find Full Text PDFGlucocorticoids are the final effectors of the stress axis, with numerous targets in the central nervous system and the periphery. They are essential for adaptation, yet currently it is unclear how early life events program the glucocorticoid response to stress. Here we provide evidence that involuntary swimming at early developmental stages can reconfigure the cortisol response to homotypic and heterotypic stress in larval zebrafish (Danio rerio), also reducing startle reactivity and increasing spontaneous activity as well as energy efficiency during active behaviour.
View Article and Find Full Text PDFZebrafish offer an opportunity to study conserved mechanisms underlying the ontogeny and physiology of the hypothalamic-pituitary-adrenal/interrenal axis. As the final effector of the hypothalamic-pituitary-adrenal/interrenal axis, glucocorticoids exert both rapid and long-term regulatory functions. To elucidate their specific effects in zebrafish, transgenic approaches are necessary to complement pharmacological studies.
View Article and Find Full Text PDFBackground: The homeodomain transcription factor orthopedia (Otp) is an evolutionarily conserved regulator of neuronal fates. In vertebrates, Otp is necessary for the proper development of different regions of the brain and is required in the diencephalon to specify several hypothalamic cell types, including the cells that control the stress response. To understand how this widely expressed transcription factor accomplishes hypothalamus-specific functions, we performed a comprehensive screening of otp cis-regulatory regions in zebrafish.
View Article and Find Full Text PDFThe stress response is a suite of physiological and behavioral processes that help to maintain or reestablish homeostasis. Central to the stress response is the hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert a variety of actions under both basal and stress conditions.
View Article and Find Full Text PDF