The Cambrian explosion was a time of groundbreaking ecological shifts related to the establishment of the Phanerozoic biosphere. Trace fossils, which are the products of animals interacting with their substrates, provide a key record of the diversification of the benthos and the evolution of behavioral complexity through this interval. The Chapel Island Formation of Newfoundland in Canada hosts the most extensive trace-fossil record from the latest Ediacaran to Cambrian Age 2, spanning about 20 million years continuously.
View Article and Find Full Text PDFExceptional paleosurfaces preserving fecal casting mounds occur in the Upper Jurassic Lastres Formation of Spain. As in modern shorelines, these biogenic structures are associated with straight to sinuous-crested ripples showing the interplay of biological and physical processes in a low-energy marine environment. These trace fossils display characteristics, distribution, and densities like those of modern arenicolid populations (approximately 35 specimens per m).
View Article and Find Full Text PDFTrace fossils from Ordovician deep-marine environments are typically produced by a shallow endobenthos adapted to live under conditions of food scarcity by means of specialized grazing, farming, and trapping strategies, preserved in low-energy intermediate to distal zones of turbidite systems. High-energy proximal zones have been considered essentially barren in the early Paleozoic. We report here the first trace and body fossils of lingulide brachiopods in deep-marine environments from an Upper Ordovician turbidite channel-overbank complex in Asturias, Spain.
View Article and Find Full Text PDFThe Agronomic Revolution of the early Cambrian refers to the most significant re-structuration of the benthic marine ecosystem in life history. Using a global compilation of trace-fossil records across the Ediacaran-Cambrian transition, this paper investigates the relationship between the benthos and depositional environments prior to, during, and after the Agronomic Revolution to shed light on habitat segregation via correspondence analysis. The results of this analysis characterize Ediacaran mobile benthic bilaterians as facies-crossing and opportunistic, with low levels of habitat specialization.
View Article and Find Full Text PDFThe Chengjiang biota (Yunnan Province, China) is a treasure trove of soft-bodied animal fossils from the earliest stages of the Cambrian explosion. The mechanisms contributing to its unique preservation, known as the Burgess Shale-type preservation, are well understood. However, little is known about the preservation differences between various animal groups within this biota.
View Article and Find Full Text PDFThe intensity, extent, and ecosystem-level impact of bioturbation (i.e. Agronomic Revolution) at the dawn of the Phanerozoic is a hotly debated issue.
View Article and Find Full Text PDFTrace-fossil assemblages reflect the response of the benthos to sets of paleoenvironmental conditions during and immediately after sedimentation. Trace fossils have been widely studied in pelagic shelf and deep-sea chalk deposits from around the globe but never documented from ancient lagoonal chalk successions. Here we report the first detailed ichnologic analysis of a lagoonal chalk unit, using as an example the Upper Cretaceous Buda Formation from the Texas Gulf Coast Basin.
View Article and Find Full Text PDFThe invasion of the land was a complex, protracted process, punctuated by mass extinctions, that involved multiple routes from marine environments. We integrate paleobiology, ichnology, sedimentology, and geomorphology to reconstruct Paleozoic terrestrialization. Cambrian landscapes were dominated by laterally mobile rivers with unstable banks in the absence of significant vegetation.
View Article and Find Full Text PDFThe Chengjiang Biota is the earliest Phanerozoic soft-bodied fossil assemblage offering the most complete snapshot of Earth's initial diversification, the Cambrian Explosion. Although palaeobiologic aspects of this biota are well understood, the precise sedimentary environment inhabited by this biota remains debated. Herein, we examine a non-weathered core from the Yu'anshan Formation including the interval preserving the Chengjiang Biota.
View Article and Find Full Text PDFThis study documents the distribution of matgrounds in a wide variety of environments recorded in the Ordovician Lashkerak and Ghelli Formations in the Alborz Mountains of northern Iran in order to evaluate controls on their distribution along the marine depositional profile. Detailed facies analysis allowed differentiating three groups of facies associations in the Lower to Upper Ordovician deposits of the Lashkerak formation: (i) estuarine system; (ii) wave-dominated shoreface-offshore complex; and (iii) mixed river- and wave-influenced deltaic system. The Middle to Upper Ordovician deposits of the Ghelli formation are divided into two groups of facies associations: (i) tide-influenced deltaic succession and (ii) deep-water fan system.
View Article and Find Full Text PDFTrilobites, key components of early Palaeozoic communities, are considered to have been invariably fully marine. Through the integration of ichnological, palaeobiological, and sedimentological datasets within a sequence-stratigraphical framework, we challenge this assumption. Here, we report uncontroversial trace and body fossil evidence of their presence in brackish-water settings.
View Article and Find Full Text PDFThe Cambrian explosion (CE) and the great Ordovician biodiversification event (GOBE) are the two most important radiations in Paleozoic oceans. We quantify the role of bioturbation and bioerosion in ecospace utilization and ecosystem engineering using information from 1367 stratigraphic units. An increase in all diversity metrics is demonstrated for the Ediacaran-Cambrian transition, followed by a decrease in most values during the middle to late Cambrian, and by a more modest increase during the Ordovician.
View Article and Find Full Text PDFThe trace-fossil record provides a wealth of information to track the rise and early evolution of animals. It comprises the activity of both hard- and soft-bodied organisms, is continuous through the Ediacaran (635-539 Ma)- Cambrian (539-485 Ma) transition, yields insights into animal behaviour and their role as ecosystem engineers, and allows for a more refined characterization of palaeoenvironmental context. In order to unravel macroevolutionary signals from the trace-fossil record, a variety of approaches is available, including not only estimation of degree of bioturbation, but also analysis of ichnodiversity and ichnodisparity trajectories, and evaluation of the occupation of infaunal ecospace and styles of ecosystem engineering.
View Article and Find Full Text PDFMagadiite, a rare hydrous sodium-silicate mineral [NaSiO(OH)·4(HO)], was discovered about 50 years ago in sediments around Lake Magadi, a hypersaline alkaline lake fed by hot springs in the semi-arid southern Kenya Rift Valley. Today this harsh lacustrine environment excludes most organisms except microbial extremophiles, a few invertebrates (mostly insects), highly adapted fish (Alcolapia sp.), and birds including flamingos.
View Article and Find Full Text PDFTrace fossils represent the primary source of information on the evolution of animal behaviour through deep time, and provide exceptional insights into complex life strategies that would be otherwise impossible to infer from the study of body parts alone. Here, we describe unusual trace fossils found in marginal-marine, storm- and river-flood deposits from the Middle Devonian Naranco Formation of Asturias (northern Spain) that constitute the first evidence for infaunal moulting in a non-trilobite euarthropod. The trace fossils are preserved in convex hyporelief, and include two main morphological variants that reflect a behavioural continuum.
View Article and Find Full Text PDFThe distribution of trace-making organisms in coastal settings is largely controlled by changes in physicochemical parameters, which in turn are a response to different climatic and oceanographic conditions. The trace fossil Macaronichnus and its modern producers are typical of high-energy, siliciclastic foreshore sands in intermediate- to high-latitude settings characterized by cold-water conditions. However, it has been found in Miocene Caribbean deposits of Venezuela, prompting the hypothesis that upwelling of cold, nutrient-rich waters rather than latitude was the main control of its distribution.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2019
Evidence for macroscopic life in the Paleoproterozoic Era comes from 1.8 billion-year-old (Ga) compression fossils [Han TM, Runnegar B (1992) 257:232-235; Knoll et al. (2006) 361:1023-1038], Stirling biota [Bengtson S et al.
View Article and Find Full Text PDFThe 2.1-billion-year-old (Ga) Francevillian series in Gabon hosts some of the oldest reported macroscopic fossils of various sizes and shapes, stimulating new debates on the origin, evolution and organization of early complex life. Here, we document ten representative types of exceptionally well-preserved mat-related structures, comprising "elephant-skin" textures, putative macro-tufted microbial mats, domal buildups, flat pyritized structures, discoidal microbial colonies, horizontal mat growth patterns, wrinkle structures, "kinneyia" structures, linear patterns and nodule-like structures.
View Article and Find Full Text PDFThe mixed layer of modern oceans is a zone of fully homogenized sediment resulting from bioturbation. The mixed layer is host to complex biogeochemical cycles that directly impact ecosystem functioning, affecting ocean productivity and marine biodiversity. The timing of origin of the mixed layer has been controversial, with estimates ranging from Cambrian to Silurian, hindering our understanding of biogeochemical cycling and ecosystem dynamics in deep time.
View Article and Find Full Text PDFTrace fossils of sediment bulldozers are documented from terminal Ediacaran strata of the Nama Group in Namibia, where they occur in the Spitskop Member of the Urusis Formation (Schwarzrand Subgroup). They consist of unilobate to bilobate horizontal to subhorizontal trace fossils describing scribbles, circles and, more rarely, open spirals and meanders, and displaying an internal structure indicative of active fill. Their presence suggests that exploitation of the shallow infaunal ecospace by relatively large bilaterians was already well underway at the dawn of the Phanerozoic.
View Article and Find Full Text PDFBioturbation plays a substantial role in sediment oxygen concentration, chemical cycling, regeneration of nutrients, microbial activity, and the rate of organic matter decomposition in modern oceans. In addition, bioturbators are ecosystem engineers which promote the presence of some organisms, while precluding others. However, the impact of bioturbation in deep time remains controversial and limited sediment mixing has been indicated for early Paleozoic seas.
View Article and Find Full Text PDFContrasts between the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE) have long been recognized. Whereas the vast majority of body plans were established as a result of the CE, taxonomic increases during the GOBE were manifested at lower taxonomic levels. Assessing changes of ichnodiversity and ichnodisparity as a result of these two evolutionary events may shed light on the dynamics of both radiations.
View Article and Find Full Text PDFThe beginning of the Cambrian was a time of marked biological and sedimentary changes, including the replacement of Proterozoic-style microbial matgrounds by Phanerozoic-style bioturbated mixgrounds. Here we show that Ediacaran-style matground-based ecology persisted into the earliest Cambrian. Our study in the type section of the basal Cambrian in Fortune Head, Newfoundland, Canada reveals widespread microbially induced sedimentary structures and typical Ediacaran-type matground ichnofossils.
View Article and Find Full Text PDF