We investigate the discrete diffraction phenomenon in a Polymer-Liquid Crystal-Polymer Slices (POLICRYPS) overlaying a random distribution of gold nanoparticles (AuNPs, plasmonic elements). We study the propagation of a CW green laser beam through the waveguide structure as a function of beam polarization, laser intensity and sample temperature. It turns out that the plasmonic field created at the interface between AuNPs and POLICRYPS waveguides enables and stabilizes the optical field propagation within the responsive nematic liquid crystal channels.
View Article and Find Full Text PDFAntibiotic resistance refers to when microorganisms survive and grow in the presence of specific antibiotics, a phenomenon mainly related to the indiscriminate widespread use and abuse of antibiotics. In this framework, thanks to the design and fabrication of original functional nanomaterials, nanotechnology offers a powerful weapon against several diseases such as cancer and pathogenic illness. Smart nanomaterials, such as metallic nanoparticles and semiconductor nanocrystals, enable the realization of novel drug-free medical therapies for fighting against antibiotic-resistant bacteria.
View Article and Find Full Text PDFThermo-sensitive liquid crystals may result, for some aspects, good host materials for plasmonic nanoparticles. In particular they are suitable to study and measure the temperature variations produced by photo-induced plasmonic joule effect in the metallic nanoparticles. Combining the properties of liquid crystals and metallic nanoparticles, allows to measure temperature variations in different ways by exploiting the optical properties of thermotropic liquid crystals: In a first attempt, by combining nematic liquid crystals and spherical metallic nanoparticles, we have predicted and measured temperature changes, under a suitable (resonant) optical illumination, by measuring the photo-thermal induced birefringence variation.
View Article and Find Full Text PDFWe present a detailed study on the resonant gain (RG) phenomena occurring in two nanostructures, in which the presence of dielectric singularities is used to reach a huge amplification of the emitted photons resonantly interacting with the system. The presence of gain molecules in the considered nanoresonator systems makes it possible to obtain optical features that are able to unlock several applications. Two noticeable cases have been investigated: a 1D nanoresonator based on hyperbolic metamaterials and a 3D metal/dielectric spherical multishell.
View Article and Find Full Text PDF