Publications by authors named "Luigi Torre"

Given the increasing pressure from extreme events due to climate change, the planting of new trees has become a priority in the political agendas of cities. However, the rush to plant trees often fails to account for the reduced performance and lifespan of trees in heavily urbanized areas and the environmental impact of their production, maintenance, and eventual disposal. By means of the Life Cycle Analysis, this study aims to investigate the potential environmental benefit and impact of trees planted in three European cities located in Mediterranean areas (Perugia, Thessaloniki, and Cascais), that have adhered to the management guidelines of the LIFE Clivut project.

View Article and Find Full Text PDF

Using biomass to develop and obtain environmentally friendly and industrially applicable biomaterials is increasingly attracting global interest. Herein, cellulose nanocrystals (CNCs) and lignin nanoparticles (LNPs) were extracted from L., a freshwater free-floating aquatic species commonly called duckweed.

View Article and Find Full Text PDF

Carbon/Phenolic Composites (CPCs) are essential to manufacture many portions of the nozzle assembly of Solid Rocket Motors (SRMs) which are essential both to preserve the independent access to space as well as for the homeland security. In our research, a feasible approach aimed at preliminary retrieving the in-plane and out-plane thermal diffusivity of CPCs through the Oxy-Acetylene Torch (OAT) tests was validated. The proposed approach showed to be effective and able to bypass some limitations of common protocols, especially in terms of capability to determine the thermal diffusivity of CPCs at high heating rates.

View Article and Find Full Text PDF

We propose a new methodology for long-term biopotential recording based on an MEMS multisensor integrated platform featuring a commercial electrostatic charge-transfer sensor. This family of sensors was originally intended for presence tracking in the automotive industry, so the existing setup was engineered for the acquisition of electrocardiograms, electroencephalograms, electrooculograms, and electromyography, designing a dedicated front-end and writing proper firmware for the specific application. Systematic tests on controls and nocturnal acquisitions from patients in a domestic environment will be discussed in detail.

View Article and Find Full Text PDF

This work reports on the development of starch-rich thermoplastic based formulations produced by using mango kernel flour, avoiding the extraction process of starch from mango kernel to produce these materials. Glycerol, sorbitol and urea at 15 wt% are used as plasticizers to obtain thermoplastic starch (TPS) formulations by extrusion and injection-moulding processes. Mechanical results show that sorbitol and urea allowed to obtain samples with tensile strength and elongation at break higher than the glycerol-plasticized sample, achieving values of 2.

View Article and Find Full Text PDF

Here, we present novel biocompatible poly(butylene -1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison.

View Article and Find Full Text PDF

The development of bio-based materials is of great importance in the present environmental circumstances; hence, research has greatly advanced in the valorization of lignin from lignocellulosic wastes. Lignin is a natural polymer with a crosslinked structure, valuable antiradical activity, unique thermal- and UV-absorption properties, and biodegradability, which justify its use in several prospective and useful application sectors. The active functionalities of lignin promote its use as a valuable material to be adopted in the composite and nanocomposites arenas, being useful and suitable for consideration both for the synthesis of matrices and as a nanofiller.

View Article and Find Full Text PDF

The efficacy of polylactic acid (PLA)/Magnesium (Mg)-based materials for driving stem cells toward bone tissue engineering applications requires specific Mg surface properties to modulate the interface of stem cells with the film. Here, we have developed novel PLA/Mg-based composites and explored their osteogenic differentiation potential on human adipose stem cells (hASCs). Mg-particles/polymer interface was improved by two treatments: heating in oxidative atmosphere (TT) and surface modification with a compatibilizer (PEI).

View Article and Find Full Text PDF

In this work, we propose a wireless wearable system for the acquisition of multiple biopotentials through charge transfer electrostatic sensors realized in MEMS technology. The system is designed for low power consumption and low invasiveness, and thus candidates for long-time monitoring in free-living conditions, with data recording on an SD or wireless transmission to an external elaborator. Thanks to the wide horizon of applications, research is very active in this field, and in the last few years, some devices have been introduced on the market.

View Article and Find Full Text PDF

In the present work, anthocyanin (ACN) hybrid nanopigments were synthetized by using a natural pomegranate dye (PD) and calcined hydrotalcite (HT) and montmorillonite (MMT) nanoclays. A wide colour gamut was obtained with MMT-based nanopigments ranging from reddish to bluish hues caused by structural transformations of ACNs at different pH values. However, a buffer effect was observed with HT obtaining samples a similar final colour regardless of the synthesis conditions.

View Article and Find Full Text PDF

Oxidative stability of food is one of the most important parameters affecting integrity and consequently nutritional properties of dietary constituents. Antioxidants are widely used to avoid deterioration during transformation, packaging, and storage of food. In this paper, novel poly (vinyl alcohol) (PVA)-based films were prepared by solvent casting method adding an hydroxytyrosol-enriched extract (HTyrE) or an oleuropein-enriched extract (OleE) in different percentages (5, 10 and 20% /) and a combination of both at 5% /.

View Article and Find Full Text PDF

In this paper, we study the correlation between the dielectric behavior of polypropylene/multi-walled carbon nanotube (PP/MWCNT) nanocomposites and the morphology with regard to the crystalline structure, nanofiller dispersion and injection molding conditions. As a result, in the range of the percolation threshold the dielectric behavior shifts to a more frequency-independent behavior, as the mold temperature increases. Moreover, the position further from the gate appears as the most conductive.

View Article and Find Full Text PDF

This study was dedicated to the functional characterization of innovative poly(lactic acid) (PLA)-based bilayer films containing lignocellulosic nanostructures (cellulose nanocrystals (CNCs) or lignin nanoparticles (LNPs)) and umbelliferone (UMB) as active ingredients (AIs), prepared to be used as active food packaging. Materials proved to have active properties associated with the antioxidant action of UMB and LNPs, as the combination of both ingredients in the bilayer formulations produced a positive synergic effect inducing the highest antioxidant capacity. The results of overall migration for the PLA bilayer systems combining CNCs or LNPs and UMB revealed that none of these samples exceeded the overall migration limit required by the current normative for food packaging materials in both non-polar and polar simulants.

View Article and Find Full Text PDF

Polylactic acid (PLA) films containing 1 wt % and 3 wt % of lignin nanoparticles (pristine (LNP), chemically modified with citric acid (caLNP) and acetylated (aLNP)) were prepared by extrusion and characterized in terms of their overall performance as food packaging materials. Morphological, mechanical, thermal, UV-Vis barrier, antioxidant and antibacterial properties were assayed; appropriate migration values in food simulants and disintegration in simulated composting conditions were also verified. The results obtained indicated that all lignin nanoparticles succeeded in conferring UV-blocking, antioxidant and antibacterial properties to the PLA films, especially at the higher filler loadings assayed.

View Article and Find Full Text PDF

We propose an unobtrusive, wearable, and wireless system for the pre-screening and follow-up in the domestic environment of specific sleep-related breathing disorders. This group of diseases manifests with episodes of apnea and hypopnea of central or obstructive origin, and it can be disabling, with several drawbacks that interfere in the daily patient life. The gold standard for their diagnosis and grading is polysomnography, which is a time-consuming, scarcely available test with many wired electrodes disseminated on the body, requiring hospitalization and long waiting times.

View Article and Find Full Text PDF

Herein, we present poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE) films characterized by an unpatterned microstructure and a specific hydrophobicity, capable of boosting a drastic cytoskeleton architecture remodeling, culminating with the neuronal-like differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs). We have used two different filming procedures to prepare the films, solvent casting (PBCE) and compression-moulding (PBCE*). PBCE film had a rough and porous surface with spherulite-like aggregations (Ø = 10-20 μm) and was characterized by a water contact angle = 100°.

View Article and Find Full Text PDF

Herein we present the production of novel nanocomposite films consisting of polylactic acid (PLA) polymer and the inclusion of nanoparticles of lignin (LNP), ZnO and hybrid ZnO@LNP (ZnO, 3.5% wt, ICP), characterized by similar regular shapes and different diameter distribution (30-70 nm and 100-150 nm, respectively). The obtained set of binary, ternary and quaternary systems were similar in surface wettability and morphology but different in the tensile performance: while the presence of LNP and ZnO in PLA caused a reduction of elastic modulus, stress and deformation at break, the inclusion of ZnO@LNP increased the stiffness and tensile strength (σ = 65.

View Article and Find Full Text PDF

Natural dyes obtained from agro-food waste can be considered promising substitutes of synthetic dyes to be used in several applications. With this aim, in the present work, we studied the use of chlorophyll dye (CD) extracted from broccoli waste to obtain hybrid nanopigments based on calcined hydrotalcite (HT) and montmorillonite (MMT) nanoclays. The synthesized chlorophyll hybrid nanopigments (CDNPs), optimized by using statistical designed experiments, were melt-extruded with a polyester-based matrix (INZEA) at 7 wt% loading.

View Article and Find Full Text PDF

In the present work, the effect of different bran content on the overall thermomechanical behavior of plasticized wheat flours (thermoplastic wheat flour; TPWF) was investigated. Refined flour (F0) with negligible bran fiber content, F1 flour (whole grain flour, 20% wt. bran), F3 (50% wt.

View Article and Find Full Text PDF

The main objective of this research activity was to design and realize active films with tunable food functional properties. In detail, caffeic acid (CA), a polyphenol with high antioxidant effect, was used as active ingredient in poly (vinyl alcohol-co-ethylene) (EVOH) films at 5 wt.% and 15 wt.

View Article and Find Full Text PDF
Article Synopsis
  • Binary and ternary nanocomposites made of poly(l-lactide) (PLLA), enhanced with 1 wt % nanolignin and varying metal oxide nanoparticles (0.5 wt %) like AgO and TiO, were developed and analyzed for their properties.
  • The inclusion of metal oxide nanoparticles influenced the surface structure and wettability of PLLA, with changes depending on the type and shape of the nanoparticles used.
  • Notable antibacterial activity was observed in PLLA films with TiO and AgO, alongside UV protection from lignin nanoparticles, making these materials promising for applications in food, drug packaging, and biomedical fields.
View Article and Find Full Text PDF

Fully biobased blends of thermoplastic starch and a poly(butylene cyclohexanedicarboxylate)-based random copolyester containing 25 % of adipic acid co-units (PBCEA) are prepared by melt blending and direct extrusion film casting. The obtained films are characterized from the physicochemical and mechanical point of view and their fragmentation under composting conditions is evaluated. The results demonstrate that the introduction of adipic acid co-units in the PBCE macromolecular chains permits to decrease the blending temperature, thus avoiding unwanted starch degradation reactions.

View Article and Find Full Text PDF

Polypropylene (PP) / multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt-mixing and used to manufacture samples by injection molding. The effect of processing conditions on the crystallinity and electrical resistivity was studied. Accordingly, samples were produced varying the mold temperature and injection rate, and the DC electrical resistivity was measured.

View Article and Find Full Text PDF

In this work, polyester-based nanocomposites added with laminar nanoclays (calcined hydrotalcite, HT, and montmorillonite, MMT) loaded with lemon waste natural dye (LD) and essential oil (LEO) were prepared and characterized. The optimal conditions to synthetize the hybrid materials were obtained by using statistically designed experiments. The maximum LD adsorption with HT was found using 5 wt% of surfactant (sodium dodecyl sulfate), 5 wt% of mordant (aluminum potassium sulfate dodecahydrate) and 50% () ethanol.

View Article and Find Full Text PDF

Considering the current context of research aiming at proposing new bioplastics with low costs and properties similar to fossil-based commodities currently on the market, in the present work, a hybrid blend containing a prevalent amount of cheap inedible cereal flour (70 wt %) and poly(butylene succinate) (PBS) (30 wt %) has been prepared by a simple, eco-friendly, and low-cost processing methodology. In order to improve the interfacial tension and enhance the adhesion between the different phases at the solid state, with consequent improvement in microstructure uniformity and in material mechanical and adhesive performance, the PBS fraction in the blend was replaced with variable amounts (0-25 wt %) of PBS-based green copolymer, which exerted the function of a compatibilizer. The copolymer is characterized by an ad hoc chemical structure, containing six-carbon aliphatic rings, also present in the flour starch structure.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona792sfqv4kpd9rpm23tbapcagl6aq6k7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once