Proc Natl Acad Sci U S A
February 2025
In wearable smart systems, continuous monitoring and accurate classification of different sleep-related conditions are critical for enhancing sleep quality and preventing sleep-related chronic conditions. However, the requirements for device-skin coupling quality in electrophysiological sleep monitoring systems hinder the comfort and reliability of night wearing. Here, we report a washable, skin-compatible smart garment sleep monitoring system that captures local skin strain signals under weak device-skin coupling conditions without positioning or skin preparation requirements.
View Article and Find Full Text PDFOmnidirectional strain sensing and direction recognition ability are features of the human tactile sense, essential to address the intricate and dynamic requirements of real-world applications. Most of the current strain sensors work by converting uniaxial strain into electrical signals, which restricts their use in environments with multiaxial strain. Here, the first device with simultaneous isotropic omnidirectional hypersensitive strain sensing and direction recognition (IOHSDR) capabilities is introduced.
View Article and Find Full Text PDFEnergy harvesting from natural sources, including bodily movements, vehicle engine vibrations, and ocean waves, poses challenges due to the broad range of frequency bands involved. Piezoelectric materials are frequently used in energy harvesters, although their effectiveness depends on aligning the device's natural frequency with the frequency of the target energy source. This study models energy harvesters customized for specific applications by adjusting their natural frequencies to match the required bandwidth.
View Article and Find Full Text PDFAir pollution has been associated with several health problems. Detecting and measuring the concentration of harmful pollutants present in complex air mixtures has been a long-standing challenge, due to the intrinsic difficulty of distinguishing among these substances from interferent species and environmental conditions, both indoor and outdoor. Despite all efforts devoted by the scientific and industrial communities to tackling this challenge, the availability of suitable device technologies able to selectively discriminate these pollutants present in the air at minute, yet dangerous, concentrations and provide a quantitative measure of their concentrations is still an unmet need.
View Article and Find Full Text PDFEfficient operation of control systems in robotics or autonomous driving targeting real-world navigation scenarios requires perception methods that allow them to understand and adapt to unstructured environments with good accuracy, adaptation, and generality, similar to humans. To address this need, we present a memristor-based differential neuromorphic computing, perceptual signal processing, and online adaptation method providing neuromorphic style adaptation to external sensory stimuli. The adaptation ability and generality of this method are confirmed in two application scenarios: object grasping and autonomous driving.
View Article and Find Full Text PDFMaterials following Murray's law are of significant interest due to their unique porous structure and optimal mass transfer ability. However, it is challenging to construct such biomimetic hierarchical channels with perfectly cylindrical pores in synthetic systems following the existing theory. Achieving superior mass transport capacity revealed by Murray's law in nanostructured materials has thus far remained out of reach.
View Article and Find Full Text PDFPaper is an ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems. When combined with nanomaterial-based devices, it can be harnessed for various Internet-of-Things applications, ranging from wearable electronics to smart packaging. However, paper remains a challenging substrate for electronics due to its rough and porous nature.
View Article and Find Full Text PDFUrinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due to the emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture and flow cytometry, require time-consuming protocols and expensive equipment. We present here a machine learning-assisted colorimetric sensor array based on recognition of ligand-functionalized Fe single-atom nanozymes (SANs) for the identification of microorganisms at the order, genus, and species levels.
View Article and Find Full Text PDFThis paper presents the development of a miniaturized sensor device for selective detection of pathogens, specifically Influenza A Influenza virus, as an enveloped virus is relatively vulnerable to damaging environmental impacts. In consideration of environmental factors such as humidity and temperature, this particular pathogen proves to be an ideal choice for our study. It falls into the category of pathogens that pose greater challenges due to their susceptibility.
View Article and Find Full Text PDFIn the dynamic landscape of the Internet of Things (IoT), where smart devices are reshaping our world, nanomaterials can play a pivotal role in ensuring the IoT's sustainability. These materials are poised to redefine the development of smart devices, not only enabling cost-effective fabrication but also unlocking novel functionalities. As the IoT is set to encompass an astounding number of interconnected devices, the demand for environmentally friendly nanomaterials takes center stage.
View Article and Find Full Text PDFTwo-dimensional (2D) materials attract attention from the academic community due to their excellent properties, and their wide application in sensing is expected to revolutionize environmental monitoring, medical diagnostics, and food safety. In this work, we systematically evaluate the effects of 2D materials on the Au chip surface plasmon resonance (SPR) sensor. The results reveal that 2D materials cannot improve the sensitivity of intensity-modulated SPR sensors.
View Article and Find Full Text PDFAn integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2023
In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e.
View Article and Find Full Text PDFWe propose a computational design framework to design the architecture of a white lighting system having multiple pixelated patterns of electric-field-driven quantum dot light-emitting diodes. The quantum dot of the white lighting system has been optimised by a system-level combinatorial colour optimisation process with the Nelder-Mead algorithm used for machine learning. The layout of quantum dot patterns is designed precisely using rigorous device-level charge transport simulation with an electric-field dependent charge injection model.
View Article and Find Full Text PDFMaterials adopted in electronic gas sensors, such as chemiresistive-based NO sensors, for integration in clothing fail to survive standard wash cycles due to the combined effect of aggressive chemicals in washing liquids and mechanical abrasion. Device failure can be mitigated by using encapsulation materials, which, however, reduces the sensor performance in terms of sensitivity, selectivity, and therefore utility. A highly sensitive NO electronic textile (e-textile) sensor was fabricated on Nylon fabric, which is resistant to standard washing cycles, by coating Graphene Oxide (GO), and GO/Molybdenum disulfide (GO/MoS) and carrying out in situ reduction of the GO to Reduced Graphene Oxide (RGO).
View Article and Find Full Text PDFThe triboelectric effect occurs when two dissimilar materials are in physical contact, attributed to the combination of contact electrification (CE) and electrostatic induction. It has been extensively explored for the development of high-performance triboelectric nanogenerators (TENGs). In this paper, we report on, besides the CE-related charge generation, an additional charge generation phenomenon associated with the modulation of the p-n junction when two semiconductor materials [methylammonium lead iodide (MAPI) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)] are put in contact and separated dynamically.
View Article and Find Full Text PDFSmart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage.
View Article and Find Full Text PDFQuantum dot light-emitting diodes (QD-LEDs) are widely recognised as great alternatives to organic light-emitting diodes (OLEDs) due to their enhanced performances. This focus article surveys the current progress on the state-of-the-art QD-LED technology including material synthesis, device optimization and innovative fabrication processes. A discussion on the material synthesis of core nanocrystals, shell layers and surface-binding ligands is presented for high photoluminescence quantum yield (PLQY) quantum dots (QDs) using heavy-metal free materials.
View Article and Find Full Text PDFElastomers and, in particular, polydimethylsiloxane (PDMS) are widely adopted as biocompatible mechanically compliant substrates for soft and flexible micro-nanosystems in medicine, biology, and engineering. However, several applications require such low thicknesses (., <100 μm) that make peeling-off critical because very thin elastomers become delicate and tend to exhibit strong adhesion with carriers.
View Article and Find Full Text PDFThe development of ultralow-power and easy-to-fabricate electronics with potential for large-scale circuit integration (.., complementary or complementary-like) is an outstanding challenge for emerging off-the-grid applications, .
View Article and Find Full Text PDFWe report on the design, fabrication, and characterization of heterostructure In-Zn-O (IZO) thin-film transistors (TFTs) with improved performance characteristics and robust operation. The heterostructure layer is fabricated by stacking a solution-processed IZO film on top of a buffer layer, which is deposited previously using an electron beam (e-beam) evaporator. A thin buffer layer at the dielectric interface can help to template the structure of the channel.
View Article and Find Full Text PDF